向量证明重心的方法3篇
向量证明重心的方法1
三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD
(1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC中点。作DF//BE则EF=EC/2=AC/4=3c。*行线分线段成比OD/AD=EF/AF即(6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。(3).OD=2b+2c,AO=AD-OD=4b+4c=2(2b+2c)=2OD。
设BC中点为M∵PA+PB+PC=0∴PA+2PM=0∴PA=2MP∴P为三角形ABC的重心。上来步步可逆、∴P是三角形ABC重心的充要条件是PA+PB+PC=0
如何用向量证明三角形的重心将中线分为2:1
设三角形ABC的`三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1
证明:用归一法
不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b
因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)
同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b
在三角形ABO中,AO=BO-BA
所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b
因为向量a和b线性无关,所以
-y=x/2-1
y/2=x/2
解得x=y=2/3
所以A0:AD=BO:BE=2:3
故AO:OD=BO:OE=2:1
向量证明重心的方法2
设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1
所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’
因此有AO:OD=BO:OE=CO:OF=2:1
设三角形ABC的顶点A,B,C的坐标分别为(X1,Y1),(X2,Y2),(X3,Y3)证明:三角形ABC的重心(即三条中线的交点)M的坐标(X,Y)满足:X=X1+X2+X3/3 Y=Y1+Y2+Y3/3
设:AB的中点为D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3[x-(x1+x2)/2]===>x=(x1+x2+x3)/3同理: y=(y1+y2+y3)/3
如图。设AB=a(向量),AC=b, AD=(a+b)/2,AO=tAB=ta/2+tb/2.
BE=b/2-a. AO=a+sBE=(1-s)a+sb/2.
t/2=1-s, t/2=s/2.消去s.t=2/3.AO=(2/3)AB.OD=(1/3)AB,AO=2OD.
如何用向量证明三角形的重心将中线分为2:1
设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1
向量证明重心的方法3篇扩展阅读
向量证明重心的方法3篇(扩展1)
——向量积分配律的证明例子3篇
向量积分配律的证明例子1
三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。
下面把向量外积定义为:
a × b = |a|·|b|·Sin.
分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。
下面给出代数方法。我们假定已经知道了:
1)外积的反对称性:
a × b = - b × a.
这由外积的定义是显然的。
2)内积(即数积、点积)的分配律:
a·(b + c) = a·b + a·c,
(a + b)·c = a·c + b·c. 这由内积的定义a·b = |a|·|b|·Cos,用投影的方法不难得到证明。
3)混合积的性质:
定义(a×b)·c为矢量a, b, c的混合积,容易证明:
i) (a×b)·c的.绝对值正是以a, b, c为三条邻棱的*行六面体的体积,其**号由a, b, c的定向决定(右手系为正,左手系为负)。
从而就推出:
ii) (a×b)·c = a·(b×c)
所以我们可以记a, b, c的混合积为(a, b, c).
由i)还可以推出:
iii) (a, b, c) = (b, c, a) = (c, a, b)
我们还有下面的一条显然的结论:
iv) 若一个矢量a同时垂直于三个不共面矢a1, a2, a3,则a必为零矢量。
下面我们就用上面的1)2)3)来证明外积的分配律。
设r为空间任意矢量,在r·(a×(b + c))里,交替两次利用3)的ii)、iii)和数积分配律2),就有
r·(a×(b + c))
= (r×a)·(b + c)
= (r×a)·b + (r×a)·c
= r·(a×b) + r·(a×c)
= r·(a×b + a×c)
移项,再利用数积分配律,得
r·(a×(b + c) - (a×b + a×c)) = 0
这说明矢量a×(b + c) - (a×b + a×c)垂直于任意一个矢量。按3)的iv),这个矢量必为零矢量,即
a×(b + c) - (a×b + a×c) = 0
所以有
a×(b + c) = a×b + a×c.
证毕。
三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。
下面把向量外积定义为:
a × b = |a|·|b|·Sin.
分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。
向量积分配律的证明例子2
下面给出代数方法。我们假定已经知道了:
1)外积的反对称性:
a × b = - b × a.
这由外积的定义是显然的。
2)内积(即数积、点积)的分配律:
a·(b + c) = a·b + a·c,
(a + b)·c = a·c + b·c.
这由内积的定义a·b = |a|·|b|·Cos,用投影的方法不难得到证明。
3)混合积的性质:
定义(a×b)·c为矢量a, b, c的混合积,容易证明:
i) (a×b)·c的绝对值正是以a, b, c为三条邻棱的*行六面体的体积,其**号由a, b, c的定向决定(右手系为正,左手系为负)。
从而就推出:
ii) (a×b)·c = a·(b×c)
所以我们可以记a, b, c的混合积为(a, b, c).
由i)还可以推出:
iii) (a, b, c) = (b, c, a) = (c, a, b)
向量证明重心的方法3篇(扩展2)
——向量法证明正弦定理3篇
向量法证明正弦定理1
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
向量法证明正弦定理2
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C
由图1,AC+CB=AB(向量符号打不出)
在向量等式两边同乘向量j,得·
j·AC+CB=j·AB
∴│j││AC│cos90°+│j││CB│cos(90°-C)
=│j││AB│cos(90°-A)
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的'单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
向量证明重心的方法3篇(扩展3)
——求矩阵的特征值和特征向量的变换方法 (菁选3篇)
求矩阵的特征值和特征向量的变换方法1
摘 要:目前,求特征值问题的方法有两大类,1类称为变换方法,1类称为向量迭代方法,变换方法是对原矩阵进行处理,经过1系列变换,使之成为1个易于求解特征值的形式。本文利用矩阵初等变换的命题及其性质,利用初等变换求解特征值和特征向量。
关键词:特征值;特征向量;矩阵;初等变换
The methods of elementary transformation to solve the Characteristic Value and Eigenvector
Abstract: At present,There are two kinds of methods to solve the eigenvalue, the method of elementary transformation is to deal with the former matrix ,which will be easy to resolved. Resting on some characters and theorems of the elementary transformation of matrix,this artical gives two ways of elementary transformation to evaluate the matrix eigenvalue and digenvector
Keywords: Characteristic Value;Eigenvector;Matrix;elementary transformation
目 录
1 引言 1
2预备知识 2
3 行变换求特征向量和特征向量 2
4 列变换求特征向量和特征向量 5
5 行列互逆求特征值和特征向量 8
6 总结 11
参考文献 12
致谢 13
【包括:毕业论文、开题报告、任务书】
【说明:论文中有些数学符号是编辑器编辑而成,网页上无法显示或者显示格式错误,给您带来不便请谅解。】
求矩阵的特征值和特征向量的变换方法2
一、 选题意义
1、理论意义:
矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。
2、现实意义:
矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、**、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。
二、 论文综述
1、 **外有关研究的综述:
矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此**外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,**外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。**著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。**外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。
2 、本人对以上综述的评价:
矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础,**来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到更多的领域中去。
三、 论文提纲
前言
(一)、矩阵初等变换及应用
1、矩阵初等变换的基本概念
2、初等变换在方程组中的应用
3、初等变换在向量组中的应用
(二)、Householder变换及应用
1、Householder变换与Householder矩阵
2、Householder变换的保范性
3、Householder变换算法
4、Householder变换在参数估计中的应用
(三)、Givens变换及应用
1、反射与旋转
2、Givens旋转及快速Givens旋转
3、Kogbetliantz算法
4、Givens变换在图像旋转中的应用
四、预期的结果:
本论文是在前人研究的基础上就矩阵变换及其应用进行简要讨论,将矩阵变换分为初等矩阵变换、Householder变换、Givens旋转,并将矩阵变换在矩阵、方程组和向量组中的应用进行归纳,希望通过本论文的研究能巩固对矩阵变换知识的掌握,同时熟练运用矩阵变换解决矩阵、方程组和向量组中的繁琐问题,还能将矩阵变换应用于解决实际的问题。
五、参考文献
1.《矩阵理论及应用》 陈公宁著 科学出版社
2.《矩阵分析与应用 》 张贤达 著 清华大学出版社
3.《矩阵分析》 史荣昌 编著 **理工大学出版社
4.《矩阵论》 戴华 编著科学出版社
5《高等代数》(第三版)王萼芳 石生明 修订 高等教育出版社
6.《矩阵分析》 RogerA.Horn CharlesR.Johnson 编著 机械工业出版社
六、论文写作进度安排
11月17日~12月24日 搜集材料,做好论文前期准备工作,确定论文题目
12月26日~12月30日 搜集、归纳、分析材料,撰写开题报告
12年1月3日交毕业设计开题报告
假期及下学期第1~2周 系统分析与设计,撰写毕业论文
2月~4月初 毕业设计 院毕业论文初检
4月下旬 修改完善论文初稿,完成论文二稿及论文英文摘要学院抽查英文摘要
5月15日前 完成毕业论文撰写工作
5月中旬 论文外审
5月25日~6月5日 毕业答辩
6月初 公开答辩
6月中旬上报学院毕业论文相关材料
求矩阵的特征值和特征向量的变换方法3
A-VDC解码数字矩阵是宁波微迪码最新研发的的一种视频解码输出设备,适用于视频流编码的安防**中心。该产品具有全能解码接入、输出预览、录像、灵活画面组合、快速切换、定时轮循、**预案、虚拟电视墙、时间检索同时多画面输出回放、直接**电视墙上图像云台, 二次输出**、报警、远程编码设备配置等强大功能。可为大型**系统提供极其高效、可靠的专业解决方案。
一、信号接入兼容性
通用数字解码:**目前**外所有IP视频流格式,包括H.264、MPEG-2、MPEG-4等标准压缩编码格式(如海康、大华、SONY、安维思、亚奥、艾立克等**主流厂家)、高清(720P,1080P等)压缩编码格式、用户自定义及其它压缩编码格式信号(见图1所示)。用户只需提供压缩编码协议及其SDK开发包,VDC的开放式接口*台都能方便加入。
图(1)
二、系统级联
图(2)
单台数字解码矩阵可同时解码输出16路高清信号,32路D1信号,及上百路CIF信号。信号画面图象清晰、实时显示。可进行多台解码矩阵级联输出,输出路数不受限制,前端可以是硬盘录像机、视频服务器、网络摄像机等IP流设备(见图2所示)。输入信号路数不受限制。
由于传统的解码输出都是专用采用专用设备,成本较高,而A-VDC解码数字矩阵通过硬解与软解相结合的解码方式,避免了传统编解码系统中的设备繁多,**复杂的缺陷,同时可**降低系统成本。
三、信号解码输出显示
1)信号组合显示
IP流通过网络传输到A-VDC视频解码矩阵,输出信号可单画面、多画面自定义分割显示,不同类型的解码输出信号可以任意合成输出,组合显示(见图3所示,可选择常用信号组合模板,也可以任意编辑1-16路组合方式),能快速切换和改变不同显示模式。
图(3)
2)轮循显示
A-VDC解码矩阵可将解码信号直接输出到电视墙等显示设备。电视墙可对每一个合成窗口或**窗口进行定时轮循输出,也可以对多个合成窗口之间设定轮循输出。(以图4为例,可对A、B、C框内的显示窗口和通道分别进行定时轮循输出设置。)能任意设定间隔时间和通道。
图(4)
每台A-VDC解码矩阵最多可同时解码16路高清信号,32路D1信号,及上百路CIF信号。轮巡解码可根据需要而定(**组合显示屏多时可通过减少轮巡频率,或增加解码矩阵设备的台数);多台A-VDC解码矩阵可组成矩阵群,可通过远程**电脑管理每台解码矩阵各种功能。
四、系统功能
A-VDC解码矩阵集多项强大的系统功能于一身,包括用户权限设置管理、IP视频流共享、信号检索、信号录像回放、显示预案保存和调用、自动报警、虚拟电视墙、等多项功能,同时为第三方提供SDK接口,以便实现联动**。
1)权限管理与系统保护
设定多级用户密码登陆,使服务端和客户端的不同操作员可享有不同权限,以避免非法操作。
2)IP视频流的共享
本地和远程用户只要有权限就可能过客户端软件可以预览IP视频流;拥有**权限的用户还可以通过客户端软件配置服务端的参数。
3)显示模式预案保存和调用
能对输出信号的窗口组合显示模式,轮巡模式,输入信号显示模式,连接参数定制预案,用户只需点击预案就能即时无缝切换所选的预案模式。
4)信号检索及多窗口回放
可对录像资料进行检索,(如下图5所示)。提供分散集中相结合的存储方式,和**的信号检索服务,实现对所有信息的集中检索。检索的条件可以自行定义,比如通过视频文件信息(如文件属性等),可精确选定时、分、秒,以迅速检索需要的录像资料;回放与录像同时进行,互不影响; 可单画面全屏回放,也可多路同时回放。
图(5)
5)信号录像回放
能对解码输出信号在操控客户端进行预览、录像及定时录。
6)自动报警
报警自动弹出窗口到指定显示器显示(如下图6所示)。
图(6)
7)虚拟电视墙
a. 电视墙布局可以任意自定义
进入电视墙配置界面,可对电视墙的排列, 每个显示器的大小,颜色及对应的矩阵 输出口,可以任意编辑。
b.每个显示墙显示状态和信号类型能清晰直观显示。
向量证明重心的方法3篇(扩展4)
——与公司存在劳动关系的证明方法3篇
与公司存在劳动关系的证明方法1
用人单位招用劳动者未订立书面劳动合同,但同时具备下列情形的,劳动关系成立。
(一)用人单位和劳动者符合法律、法规规定的主体资格;
(二)用人单位**制定的各项劳动规章**适用于劳动者,劳动者受用人单位的劳动管理,从事用人单位安排的有报酬的劳动;
(三)劳动者提供的劳动是用人单位业务的组成部分。
二、用人单位未与劳动者签订劳动合同,认定双方存在劳动关系时可参照下列凭证:
(一)工资支付凭证或记录(职工工资发放花名册)、缴纳各项社会保险费的记录;
(二)用人单位向劳动者发放的“工作证”、“服务证”等能够证明身份的证件;
(三)劳动者填写的用人单位招工招聘“登记表”、“报名表”等招用记录;
(四)考勤记录;
(五)其他劳动者的证言等。
与公司存在劳动关系的证明方法2
1、工资卡、工资存折、工资条或其它工资发放记录(最好有单位盖章确认)、职工花名册;
2、用人单位为劳动者缴纳的各项社会保险费的记录;
3、用人单位向劳动者发放的“工作证”、“服务证”、“上岗证”、“外派证”等能够证明职务职位身份的证件;
4、劳动者填写的用人单位招工招聘“登记表”、“报名表”等招用记录;
5、用人单位的考勤记录(考勤表、出勤卡等);
6、其他劳动者的证言;
7、其它能够证明劳动者与用人单位存在事实劳动关系的证据。
(1)、载有劳动者名字的用人单位的各种文件
用人单位下发的各种文件,类似各种通知、工作任务单、任命通知书、介绍信、签到表等书面资料中,只要其中含有劳动者本人的名字,一般都可以证明劳动者与用人单位存在劳动关系的事实。但是,此类证据必须上有用人单位的公章才有证明证明效力。
(2)、劳动者**用人单位与其它实体或个人签订的合同
在用人单位与其它实体或个人签订合同特别是经济事务的合同时,一般都会有“签约**”或“**人”一栏,此时,如果劳动者作为用人单位的**在合同上签字,该合同又有用人单位所盖公章的话,那么可推定双方存在劳动关系。
(3)、与用人单位有业务往来的其它单位留存的相关资料
与用人单位有业务往来的其它单位若能出具有关劳动者曾**用人单位洽谈业务方面的证明,也可以证明劳动者曾为用人单位提供过劳动。
向量证明重心的方法3篇(扩展5)
——切比雪夫不等式的推导证明方法3篇
切比雪夫不等式的推导证明方法1
试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。
分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此
1000次试验中出现正面H的次数服从二项分布.
解:设X表示1000次试验中出现正面H的次数,则X是一个随机变量,且
~XB(1000,1/2).因此
500
2
1
1000=×==npEX,
250)
2
答题完毕,祝你开心!
1
1(
2
1
1000)1(= ××= =pnpDX,
而所求的概率为
}500600500400{}600400{ << =< }100100{< < =EXXP
}100{< =EXXP
975.0
100
1
2
= ≥
DX
切比雪夫不等式的推导证明方法2
切比雪夫(Chebyshev)不等式
对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,
恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2
切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}
越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。
同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。
切比雪夫不等式是指在任何数据集中,与*均数超过K倍标准差的'数据占的比例至多是1/K^2。
在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」*均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近:
与*均相差2个标准差的值,数目不多于1/4
与*均相差3个标准差的值,数目不多于1/9
与*均相差4个标准差的值,数目不多于1/16
向量证明重心的方法3篇(扩展6)
——****的近义词及造句
****的近义词及造句1
中文发音:****[yǔ zhòng xīn cháng]
词语解释:形容言词恳切,有分量,意味深长,含有丰富情感。
近义词:苦口婆心、谆谆告诫
用****造句
1、奶奶****地说,犯错不要紧,重要的是犯错后及时改正
2、看着这千奇百怪的石头我仿佛来到了石头宫里。
3、爷爷****的对我说:“孩子,你永远都是*人。因为你身上永远都有主着****的标记。”
4、妈妈****地对我说:“可不要只顾着贪玩呀,你现在应该把学习放在第一位。”
5、老师****的给我说,以后要再接再厉,增强信心,不要自暴自弃,相信自己,让自己从新振作起来
6、**门****的话一直牢记在战士心中。
7、老师****的话让我很有感触。
8、每当我做错事时,妈妈总会****的、逐字逐句的给我讲道理。
9、妈妈****地对小明说:“你不要天天只顾着玩,要先把学习学好呀。”
10、老奶奶这些****的话,深深地打动了我的心。
11、老师****对我说:“你永远都是我的好学生”。
12、老师每句****的话都是社会知识,我们不能不听。
13、每每和爸爸交谈时,他对我说话总是****
14、老师****的对我们说,你们要好好学习,长大为祖国作贡献
15、赵老师****的话对我们很有用。
16、妈妈****的告诉我,书写速度要提高否则考试时就会不及格。
17、蓝蓝的天空中飘浮着千奇百怪的云。
18、我犯了错,妈妈****的教导我。
19、老师****的告诉我们爱护环境就像爱护我们自己的身体一样。
20、父母和老师总是****的跟我们讲道理,希望我们能够有出息。
21、老师****地说:“放下身上的包袱,继续努力前进,创造一片属于自己的蓝天吧!”。
22、爸爸****地对我说:“无论干什么都要坚持不懈,只有有了坚持不懈的毅力,你才能成功。”
用****的近义词造句
苦口婆心:妈妈总是苦口婆心的说;要注意交通安全。
谆谆告诫:他谆谆告诫我们,不要犯胜利时骄傲起来,不要犯生活腐化的错误。
向量证明重心的方法3篇(扩展7)
——向量说课稿
向量说课稿
作为一名无私奉献的老师,通常会被要求编写说课稿,认真拟定说课稿,说课稿要怎么写呢?下面是小编整理的向量说课稿,仅供参考,大家一起来看看吧。
向量说课稿1
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中“*面向量的线性运算”的第一节课。本节内容有向量加法的*行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“*面向量”及“空间向量”中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,*行向量等概念,知道向量可以**移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的*行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满**换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,*行四边形法则在本课中所占份量略少于三角形法则。
设计原理运用了由特殊到一般的认识、思维过程,
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形.
五、教学方法
本节采用以下教学方法:
1、类比:由数的加法运算类比向量的加法运算。
2、探究:由力的合成引入*行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满**换律、结合律等,这些都体现探究式教学法的运用。
3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。
4、多**技术的运用,能直观地表现向量的*移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、归纳思想:主要体现在以下三个环节①学完*行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
3、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。
七、教学过程:
1、知识回顾:本节要进行向量的*移,且对向量加法分共线与不共线两种情况,所以要复习向量与数量的区别、响亮的表示、相等向量概念,这些都是新课学习中必要的知识铺垫。
2、新课讲解(1)向量加法的定义
①向量加法的三角形法则边形法则共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是
运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。
非共线向量的加法
②向量加法的*行四边形法则(2)向量加法的运算律
①交换律:交换律是利用*行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、例题讲解例
1、例2 4.课堂练习
5、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。
(1)三角形法则首尾相接,适用于任意多个向量的求和*行四边形法则:起点相同,适用于不共线向量的求和。
(2)*行四边形法则:起点相同,适用于不共线向量的求和。(3)运算律
交换律:+ = +
结合律:(+)+ = +(+)
4、作业:P91,A组
1、
2、。
向量说课稿2
一:说教材
*面向量的数量积是两向量之间的乘法,而*面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在*面向量的坐标表示以及*面向量的数量积及其运算律的基础上,介绍了*面向量数量积的坐标表示,*面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):*面向量数量积的坐标表示。
(2):*面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,*面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,**学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的**(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导*面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1) 模的计算公式
(2)*面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用*面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
然后是学习小结(由学生完成)
最后作业布置!
向量说课稿3
1、教材与学情分析
“*面向量的应用”这节教材在二期课改课本第10章最后一节10.6,属于拓展内容。教材选取5个例题说明向量作为工具在数学、物理中的广泛应用性,其中例1和例2说明向量在*面几何中的应用,例3(柯西不等式的证明)说明向量在代数中的应用,例4和例5说明向量在力学中的应用。已学完“力学”的高二学生对向量在力学中的应用并不陌生,联想向量相等、*行向量的关系、垂直向量的关系等解决*面几何问题让学生感到也较自然,因为这是形——形的转化、很直观,而且涉及的向量知识也较容易,学生掌握得也好。而联想向量模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的*方小于或等于模的*方的积”、将“向量加法的多边形法则”转化为“有关坐标的等式”等解决函数最值、不等式和等式证明、三角求值等问题让学生感到比较困难,其原因之一是以上的知识掌握和理解有一定的难度,二是联想构造“数——形——数”转化的要求高、综合性强、较抽象,三是教学中能力培养不到位,因此在“*面向量在代数中的应用”的教学中能力培养是关键。
本课是在学生已经学习“向量在*面几何中的应用”基础上,学习“向量在代数中的应用”。围绕以上向量的概念和运算性质的应用精心问题,引导学生观察、分析表达式的特征,联想向量知识,通过构造向量将已知条件或结论转化为向量表达、进行向量运算或向量性质的应用将所得的结果转化为所求结论的过程,学生会对数学思想方法中的“数形结合”、“转化”等有更深刻的理解;通过变式教学、特殊与一般的研究,感受数学发现的乐趣;通过错误辨析、一题多解、一题多变的探究,夯实学生基础,达到深刻理解向量的概念,熟练掌握向量的运
算和性质的目的,因而本节课的教学有助于学生能力的提高。
本课的教学对象为松江二中高二学生,他们已较好地理解了向量的概念,比较熟练地掌握向量的运算和性质,并能进行简单应用,有“数形结合”的应用意识,善于思考和发现,有较高的认知水*。因此,有可能也有必要引导他们进行问题探究。关于“数形结合”的思想应用,来源于两个方面,一是已体会到向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,二是通过基本函数的图象与性质的学习,体会到应用“数形结合”研究函数性质、解决函数的零点、方程和不等式的解等问题。正如**数学家斯蒂恩说:“如果一个特定的问题可以转化为一个图形,那么思想就整体地把握了问题,并能创造性思索问题的解法”。所以本节课以“向量在代数中的应用”为载体,进一步让学生体验“数形结合”、“转化”的思想应用为目标,培养学生的探究精神为归宿,促进学生思维能力的提高。
2、教学目标
2.1学生通过问题探究,深刻理解向量的概念,熟练掌握向量的运算和性质,并能着意联想恰当应用,解决有关代数问题;
2.2学生通过一题多解、一题多变的研究,揭示向量在代数问题中的应用本质,体验数形结合思想及特殊与一般关系的应用,感受数学发现的乐趣,培养学生的创新意识。
3、教学重点、难点、注意点
本课重点是加深向量概念、向量的运算和性质的理解,并应用数形结合与转化思想解决有关代数问题;难点是如何数形转化和有关向量模的不等式等号成立的本质理解;注意点要求学生规范表达数形结合解题的步骤。
重点突破:以问题为出发点,观察、分析、展开联想,实践探索,展示学生在讨论、回答过程中的思维活动,体会问题本质。难点突破:复习回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,通过问题衔接设计,铺垫暗示,一题多解、一题多变、错题辨析、几何画板的应用等达到突破难点目的。
4、教学方法与教学**
4.1充分体现“以学生为主体,教师为主导”的原则
注重问题设计,体现教师的导向功能,展示学生是展开联想的主体;
重视实践探索,体现教师的导律功能,展示学生是揭示规律的主体
应用**实验,体现教师的导标功能,展示学生是体验演示的主体
4.2采取教师指导下的学生实践、探索的模式,把问题作为教学的出发点,指导尝试,总结反思。
4.3 powerpoint、几何画板、多**系统
5、课堂设计
5.1新课引入
(1)用PPT在屏幕上显示华罗庚的相片和华罗庚关于“数形结合”的至理名言“数缺形时少直观形离数时难入微”的话,让学生体验数形结合是数学中非常重要的思想和解决问题的常用策略,以数学家的语言激发同学进一步学好数学的愿望;
(2)向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,引导学生回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,期望能进一步说出有关的不等式和等式,如模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的*方小于或等于模的*方的积”、将“向量加法的多边形法则”转化为“有关坐标的等式”……
(3)提出课题,在学习“向量在*面几何中的应用”基础上,学习“向量在代数中的应用”。
5.2问题探究
出示问题1。设a、b为不相等的实数,要求学生自主探索、相互讨论。
预计:学生思路分下列三种类型:
(1)有根号想到两次*方分析;
(2)由根号内的现性特征,联想向量的模概念,构造向量,将结论转化为向量表达式,从而揭示“两向量和与差的模与向量模的和与差的不等关系”本质;
(3)由根号内的现性特征,联想两点间距离公式,构造点坐标,将结论转化为*面上三点间距离的不等关系,从而揭示“两线段长度之和(差)大于或等于(小于或等于)第三线段的长”本质。
分析:学生讨论三种方法的异同点,期望说出(1)是处理绝对值和根号的一般代数方法;而(2)(3)都是应用数形转化解决,体现本问题的特殊性,且强调(2)(3)两种方法解题原理相同……
总结用向量解决代数问题的步骤:
(1)构造向量,将已知条件或结论转化为向量表达式(数————形);
(2)进行向量运算或向量性质的应用;
(3)将所得的结果转化为所求的结论(形————数)。
老师板书示范后,引导学生讨论,条件不变的前提下,由于构造向量或向量性质应用的差异,会得到不同的结论,期望同学一题多变……
注意:“两向量和与差的模与向量模的和与差的不等关系”等号成立的条件,为下面突破难点作好铺垫。
练一练
求函数的最小值。
由学生的错误答案13,引导学生寻找错误原因,并通过几何画板演示最小值取得的条件。强调最值的验证,揭示数学问题的实质,突破难点。
引导:当看到
出示问题2,即课本P50例3,让学生讨论总结“数量积的*方小于或等于模的*方的积”的应用,就证明了柯西不等式,此时预计学生比较活跃,课堂进入**……
变式
并指出等号成立的充要条件。
预计:许多学生已观察出仍然是“数量积的*方小于或等于模的*方的积”的应用,揭示数学本质本质,体会柯西不等式所反映实数关系的奇妙性,感受一般与特殊关系。
注意:“数量积的*方小于或等于模的*方的积”中等号成立的条件,为下面练习铺垫,。
练一练
预计:学生使用计算器,很快发现值为0……
教师因势利导:你能不用计数器解决吗?观察角构成的等差数列的代数特征,公差为72,项数为5,如果构造五个单位向量且顺次连接,那么将会得到什么图形?学生动手实验画图、几何画板演示,学生观察、体验。
°
预计:学生回答正五边形,并很快解释值为0的理由,将五个单位向量的起点放在原点处,终点连接,也构成正五边形,原点为其中心,由力学知识所知,五个单位向量的和为零向量。
教师给予表扬,强调同学有很好的直觉思维,因为一个真理的发现很重要,而证明只是一个时间问题。正如大数学家、物理学家牛顿有句名言:“没有大胆的猜想,就做不出伟大的发现。”并鼓励他完成逻辑证明。
教师点拨:既然构造五个单位向量能组成正五边形,那么对于多边形有怎样的向量运算性质呢?
学生:此时五个单位向量的和为零向量的结论有了依据,学生兴奋不已,而且得到了一个“副产品”,这五个角的正弦和也为0。
由此引导学生自我编题,体验一类三角求值的本质特点,从而进行一般研究。
推广:
5、3课堂总结,
(1)深化理解向量概念,熟练掌握向量的运算和性质。掌握*面向量在代数中应用的解题步骤。
(2)善于抽象概括,从而做到触类旁通;研究问题的数学特征(代数意义、几何意义),善于联想,使数量关系与几何形式有机结合。
(3)通过问题探究,应注重逻辑思维和直觉思维的有机渗透,因为直觉思维是创造性思维活动的一种表现。
5、4注意
向量是解决数学问题的一个工具,当然如果不用向量,也可以解决有关问题。
但是如果由代数特征,联想向量的概念和运算,巧设向量解题,那么可以简化问题解决,也可以加强数形结合思想的应用。
5、5作业(为进一步巩固本课所学知识和方法,完成下列作业,因课上时间)
5、6板书
投影和黑板(在代数中应用向量的运算性质解题的工具和问题1的解题过程及问题2、3的简要过程一直留在黑板上,其它都通过投影显示。)
向量说课稿4
说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“*面向量的数量积”的第一课时---*面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学**设计及教学评价设计六个方面对本节课的思考进行说明。
一、 背景分析
1、学习任务分析
*面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出*面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、 教学目标设计
《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解*面向量数量积的含义及其物理意义。
(2)体会*面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个*面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解*面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会*面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程**应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、 教学**设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“*面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学**的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多**课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
*面向量数量积的物理背景及其含义
一、 数量积的概念 二、数量积的性质 四、应用与提高
1、 概念: 例1:
2、 概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律 例3:
3、几何意义:
4、物理意义:
五、 教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。*面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力F的作用下产生位移S,
(1)力F所做的功W= 。
(2)请同学们分析这个公式的特点:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量 ︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
= ︱
︱·︱
︱cos
在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
<90°
=90°0°<
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:OB1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理**的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水*面**移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜测①的正确性是显而易见的。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生**证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ<0时,向量
与λ
,
与λ
的方向 的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
+2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生**完成)对任意向量
,b是否有以下结论:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4, 且
与
不共线,k为何值时,向量
+k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生**完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是*面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、 下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
.
2、已知△ABC中,
=
,
=
,当
·
<0或
·
=0时,试判断△ABC的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、*面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本P121习题2.4A组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
+3
与7
-5
垂直,
-4
与 7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程**的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
向量说课稿5
各位教师:
今天我说课的题目是《必修》4第二章第二单元中“*面向量的线性运算”的第一节课《向量的加法》,我从以下几个方面阐述本课的教学设计。
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中“*面向量的线性运算”的第一节课。本节内容有向量加法的*行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“*面向量”及“空间向量”中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,*行向量等概念,知道向量可以**移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的*行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满**换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,*行四边形法则在本课中所占份量略少于三角形法则。
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。
五、教学方法
本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入*行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满**换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多**技术的运用,能直观地表现向量的*移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。
3、归纳思想:主要体现在以下三个环节①学完*行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
七、教学过程:
1、回顾旧知:本节要进行向量的*移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。
2、引入新课:
(1)*行四边形法则的引入。
学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对*行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的*行四边形法则。*行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的*行四边形法则,所给出的图形也是现成的*行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用*行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过*移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。
设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的*行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对*行四边形法则理解真正到位。
(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的*行四边形法则的图形中直接引入(如图)。
所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。
这时,总结出两个不共线向量求和时,*行四边形法则与三角形法则都可以用。
设计意图:由*行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。
(3)共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。
反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则。对有如下规定:
+
=
+
=
通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用*行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。
设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。
(4)向量加法的运算律
①交换律:交换律是利用*行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。
(1)*行四边形法则:起点相同,适用于不共线向量的求和。
(2)三角形法则首尾相接,适用于任意多个向量的求和。
(3)运算律
交换律:
+
=
+
结合律:(
+
)+
=
+(
+
)
4、作业:P91,A组1、2、3。
《向量的加法》评课稿
本节所授内容基本与原先设想一致,评略得当,重点突出,难点化解。在两个加法则的引入、讲解及运用的处理方法、时间安排都把握得比较好,能够引导学生积极主动地探索*行四边形法则和三角形法则,使学生对两个加法法则形成了正确的认识,留下了深刻的印象,通过反馈练习,可以看出学生对两个法则的运用掌握的比较好,比较完整地实现了教学目标。
本节课的教学方法运用比较合理:采取了类比、探究、讲练结合及多**技术等多种方法。对数学课来说,本节课最显著的特点是将全部板书都移到了课件上,对我来说,是一次尝试,因为以前,我认为数学课没必要用课件,对全部利用课件上课更是不能接受。但是这次讲课改变了我的看法。从学生的反馈情况来看,这样处理对教学效果没有什么不良影响,反而使学生能更直观地理解两个加法法则和运算律,通过课件中的向量的*移,加深了学生对上节课所学的“相等向量”的概念的理解,也加大了课堂容量,还没有拥挤之感。从学生**容小结的叙述看,没有板书,并没有妨碍本节内容在学生脑海中留下的印象。原先的设计中,板书设计也有,打在教案的后面。
通过这节课的讲授,我收获很多:首先,从课程的构思上,没有按照教参建议及网上普遍的编排方法先讲三角形法则,而是先由学生学过的力的合成引入了*行四边形法则,由此又引入三角形法则,效果也不错。可见,对教材的处理确实要根据学生情况,灵活裁剪,不能生搬硬套。
其次,通过这节课我感到,对有些与图形联系较多的课程,使用课件讲解简便易行,关键是要根据教学设计制作合适的课件,并且合理使用。
本节缺憾也很多。首先,学生活动还是偏少,没有充分、全面地调动学生热情。其次,语言不够精炼,有时比较啰嗦,也耽误了时间,第三,学生发言时,好打断学生,总觉得学生说得不清楚,抢学生话头,打击了学生课堂参与的积极性,很不好。
以上是我对这节课的反思,不到之处,请大家指点。
向量说课稿6
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修4第二章第三节《*面向量的基本定理及其坐标表示》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
教材的地位和作用
1、向量在数学中的地位
向量在近代数学中重要和基本的数学概念,是沟通代数,几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。
2、本节在全章的地位
*面向量基本定理揭示了*面向量的基本关系和基本结构,足以进一步研究向量问题的基础,是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本**。
3、*面向量基本定理具有十分广阔的应用空间
*面向量基本定理蕴含一种十分重要的数学思想——转化思想。
二、目标分析
(一)、教学目标
1、知识与技能目标
了解*面向量基本定理的条件和结论,会用它来表示*面上的任意向量,为向量坐标化打下基础。
2、过程与方法目标
通过对*面向量基本定理的学习过程。让学生体验数学定理的产生,形成过程,体验定理所蕴含的数学思想方法。
3、情感,态度和价值观目标
通过对*面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题有力的工具之一。
(二)、教学的重点和难点
1、重点:对*面向量定理夫人探究
2、难点:对*面向量基本定理的理解及运用
三、教法、学法分析
(一)、教法
在教法上采取三主教学法:教师主导,学生主体,思维主线
1、教学**
使用多**辅助教学,使书本的图形动起来,加强了教学的主观性
2、学情分析
前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课做了充分的准备。
(二)学法
教师通过启发,激励来体现教师的主导作用,引导学生全员,全过程参与。
四、教学过程分析
(一)教学过程设计
创设情境,提出问题
数形几何,探究规律
揭示内涵,理解定理
例题练习,变式演练
归纳小结,深化认知
布置作业,巩固提高
1、创设情境,提出问题
如果e1,e2是同一*面内的两个不共线的向量,a是这一*面内的任意向量,那么a与e1,e2之间有什么关系呢?怎探求这种关系呢?
2、数形几何,探究规律
*面向量基本定理
如果e1,e2是同一*面内两个不共线的向量,那么对于这一*面内的任一向量,a,存在一对实数R1,R2使得a=R1e1+R2e2
3、揭示内涵,理解定理
(1)、为什么基底e1,e2必须不共线?
(2)、基底e1,e2是否可以选择?
(3)、定理中R1,R2的值是否唯一?
(4)、定理的价值何在?
4、例题练习,变式演练
如图4,在□ABCD中,AB=a,AD=b
试用a,b分别表示AC,BD
如图5,如果E,F分别是BC,DC的中点,试用a,b分别表示BF,DE
如图6,如果O是AC,BD的交点,G是DO的中点,试用a,b表示AG
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、课堂小结
①、向量的坐标表示
a、对于向量a=(x,y)的理解
a=xe1+ye2(e1,e2分别是x轴,y轴正方向上的单位向量);
若向量a的起点是原点,则(x,y)就是其终点的坐标。
b、向量AB的坐标
一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标。即如果A(x1,y1),B(x2,y2),则有AB=(x2—x1,y2—y1)。
c、注意要把点的坐标与向量的坐标区别**。相等的向量坐标是相同的,单起点和终点的坐标却可以不同。
②、*面向量共线的坐标表示
a、a=(x1,y1),b=(x2,y2),其中(b≠0),a//b的充要条件a=与x1y2—x2y1=0在本质上市相同的,只是形式上的差异。
b、要记准公式坐标特点,不要用错公式。
c、三点共线的判断方法
判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判断。
(2)、反思
我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水*的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课本97页第二题,98页第六题
——巩固作业的设计是保证了全体学生对*面向量基本定理的巩固应用。
选做题:用向量法证明三角形的中位线*行于第三边切等于第三边的一半
——创新作业的设计,体现了向量的工具性,使得学生对于用向量的方法证明几何命题有了初步的体验。
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
向量说课稿7
今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:
1、向量的直角坐标运算
2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。
下面我从三个方面阐述这节课。
第一方面:教材分析
本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。
(一)教材的地位和作用
向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。
同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。
(二)教材的处理
结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。
根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习**的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。
由此,我对教材的引入、例题和练习做了适当的补充和修改。
(三)教学重点和难点
根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。
由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。
要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。
(四)教学目标的分析
根据教学要求、教材的地位和作用以及学生现有的知识水*和数学能力,我把本节课的教学目标确定为以下三个方面。
1、知识教学目标
能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决*面几何问题的方法。
2、能力训练目标
培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。
3、德育渗透目标
通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学**惯。
第二方面:教法与学法分析
现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—**’的同时,每个学生也都在进行微观的‘反馈—**’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来**课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。
在教学中借助于计算机课件辅助教学。
第三方面:教学过程
共分为六个环节,具体的时间安排如下:复习**约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。
(一)复习**
(1)向量在直角坐标系中坐标的定义是什么?
(2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?
(3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?
课堂教学论认为:“要使教学过程最优化,首先要把所学习的.知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。
(二)导入新课
在教学过程中,我提出两个问题:
问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)
1、则a,b的坐标为……。
2、求a+b,a—b,λa。
3、求a+b,a—b,λa的坐标。
问题2已知A=(x1,y1),B=(x2,y2)。
1、则,的坐标分别为……。
2、化简。
3、求的坐标。
这两个问题由师生共同练习完成。
通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。
(三)创设问题
这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。
第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。
由问题1我们得到结论1:
a+b=(a1+b1,a2+b2),
a—b=(a1—b1,a2—b2),
λa=(λa1,λa2)。
用语言叙述为:
两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。
数乘向量的坐标等于数乘向量相应坐标的积。
由问题2我们得到结论2:
=(x2—x1,y2—y1)。
用语言叙述为:
一个向量的坐标等于向量终点的坐标减去始点的相应坐标。
这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。
练习1(口答)下列说法是否正确:
(1)已知向量a=(—2,4),b=(5,2),
则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。
(2)已知A(2,1),B(3,8),则=(—1,—7)。
①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。
②提醒学生区分点的坐标和向量坐标,两者是不同的概念。
上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。
第二层次:设计练习2、3、4。
练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。
(1)a=(—2,4),b=(5,2);
(2)a=(4,3),b=(—3,8)。
练习3 已知A(2,1),B(3,8),求。
练习4 已知(2,3),B(4,5),c(6,8)。
(1)若3=,求D点的坐标。
(2)求2—3+2。
这组练习由学生**完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。
第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。
例题1 已知*行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。
例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。
讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。
通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。
练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。
练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。
通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生**思考的能力和团结协作的精神。
(四)小结
为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:
向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。
(五)布置作业
为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:
1、课本第186页:练习A1(1)、2(1);练习B 1、2。
2、思考题:3a与a的坐标有什么关系?位置有什么特点?
A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。
(六)板书设计
在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:
课题:6、2、2 向量的直角坐标运算
问题1练习1 例1 练习5
结论1练习2
问题2练习3
结论2练习4
本节的说课内容到此结束,谢谢大家。
向量说课稿8
各位专家:
你们好!
今天我说课的课题是《*面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章*面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。
一、 教材分析:
1、教材的地位和作用
向量是高中阶段学习的一个新的矢量,向量概念是《*面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.
结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:
2、教学目标
(1) 知识与技能目标
1)识记*面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;
2)识记向量模的定义,会用字母和线段表示向量的模.
3)知道零向量、单位向量的概念.
(2) 过程与方法目标
学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.
(3)情感态度与价值观目标
通过构建**的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.
3、教学重难点
教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量
教学难点:向量的几何表示的理解,对零向量和单位向量的理解
二、学情分析
(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.
(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.
三、教法学法
教法:启发教学法,引探教学法,问题驱动法,并借助多**来辅助教学
学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.
四、教学过程
课前:
为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:
1、你学过的其他学科中有没有可以称为向量的?
2、向量的特点是什么?有几种描述向量的表示方法?
3、零向量的特点是什么?
【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。
课上教学过程:
1、 创设情境
数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题*面向量
【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。
2、 形成概念
结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?
采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。
单位向量、零向量的概念
【即时训练】
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知
3、 知识应用
本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对*面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力.
4、 学以致用
为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派**回答,各组之间取长补短,将课堂教学推向**,再次加强学生对向量概念的理解。
5、课堂小结
为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)
【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础
6、 布置作业
出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间.
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。
以上就是我对本节课的设计和说明,请各位**,老师批评指正
向量说课稿9
一、教材简析
1.教材的地位和作用:《实数与向量的积》这一章在高中阶段有着很重要的作用。有广泛的实际应用,在整个中学数学里起着承前启后的作用。并且是培养学生数学能力的良好题材。实数与向量的积是向量的重要组成部分,在前面学习了向量的加法和减法,掌握好实数与向量的积这一运算的关键在于明确这一运算的结果仍然是向量,要按大小和方向两个要素去理解及应用。
向量共线充要条件实际上是由实数与向量的积的定义得到的,利用它常可以解决三点共线和两直线*行等问题。能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.
同时,这节课的教学过程对进一步培养学生观察、分析、类比、化归的思想和归纳问题的能力具有重要意义。
2.教材的处理:结合教参与学生的学习能力,我将《实数与向量的积》安排了2节课。本节课是第一课时。因为在前面学习了向量的加法和减法。为了进一步体现化归思想在高中数学中的运用,我在这节课中也着重体现了化归思想的运用。
3、教学重点与难点:根据学生现状、及教学要求我确立本节课的教学重点为:理解实数与向量的积的定义及其运用。
本节课的难点定为:对向量共线的充要条件的理解
要突破这个难点,关键在于紧扣定义,讲清向量*行与直线*行的区别。
4、教学目标的分析
根据教学要求,教材的地位和作用,以及学生现有的知识水*和数学能力,我把本节课的教学目标确定为三个方面:
(1)知识教学目标:
使学生在掌握实数与向量的积的定义、运算律的基础上,理解向量共线的充要条件,并能用来解决一些实际问题。
(2)能力训练目标:
培养学生运用类比化归的方法去发现并解决问题的能力。使学生认识到化归思想在数学中的重要性。
(3)德育渗透目标:
使学生认识到事物之间的相互联系和辨证**;增强学生的应用意识;提高学生的数学素质
二、教法与学法分析
现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——**’的同时,每个学生也都在进行着微观的‘反馈——**’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来**课堂教学。这堂课用化归的方法运用向量共线的充要条件是一种较好的学法。 在这节课中涉及到了数学中的一种思想方法,即类比思想。数学思想方法是数学的精髓,它蕴含于数学知识发生、发展和应用的过程中,正确地运用数学思想方法,能把数学知识和技能转化为分析问题和解决问题的能力,体现数学学科的特点,形成良好的数学素养。
我在讲解这部分知识时注意引导学生要充分认识到数学中的类比思想,并引导学生进行类比,充分体会到类比思想的精髓。
三、教学过程
第1环节、引入新课:实数与向量的积的定义
第2环节、知识运用:实数与向量的积的运算律。
第3环节、升华提高:理解并证明向量共线定理。
第4环节、性质的运用。我针对向量共线定理设计了两个例题,从正反两个方面体现了定理的实际运用,符合学生的认知过程。在讲解这些例题时着重体现向量共线充要条件的运用。在性质的运用过程中要特别强调向量*行与直线*行的区别。在例题后我还预留了习题时间,用以巩固本节课所学。
第5环节、小结:
第6环节、布置作业:
向量说课稿10
各位评委、各位老师,大家好。今天,我说课的内容是:人教A版必修四第二章第三节《*面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。
一、教材分析:
1、教材的地位和作用:
向量是沟通代数、几何与三角函数x的一种工具,有着极其丰富的实际背景。本课时内容包含“*面向量基本定理”和“*面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。*面向量基本定理是坐标表示的基础,坐标表示使*面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.
2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能
了解向量夹角的概念,了解*面向量基本定理及其意义,掌握*面向量的正交 分解及其坐标表示。
(2)过程与方法
通过对*面向量基本定理的探究,以及*面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。
(3)情感、态度与价值观
引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。
3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———*面向量基本定理的探究,以及*面向量的坐标表示
教学难点:对*面向量基本定理的理解及其应用
二、教法分析:
针对本节课的教学目标和学生的实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。
三、学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。让学生借助学案,在教师创设的情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。
四、重点说明本节课的教学过程:本节课共设计了五个环节:发放学案,依案自学;分组探究 ,信息反馈;精讲点拨,解难释疑 ;归纳总结,建构网络 ;当堂达标,迁移拓展 。
1、发放学案,依案自学
学习并非学生对教师授予知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构。根据这一理念,我在课前下发“导学学案”,让学生以学案为依据,以学习目标、学习重点难点为主攻方向,主动查阅教材、工具书,思考问题,分析解决问题,在尝试中获取知识,发展能力。这是我编制学案的纲要。
经过学生的自学,在课堂上,我采用**的方式,让学生对知识点进行简单概述,并阐述自己的学习方法和体会。其中,向量的夹角概念,学生基本上能**解决,我会引导学生归纳出求两个向量夹角的要点:(1)两个向量要共起点,(2)两个向量的正方向所成的角。然后,通过学案上的练习题目1,检查学生的掌握程度。对本节课的重点和难点:*面向量基本定理的探究及坐标表示,我准备通过分组探究,精讲点拨,归纳总结三个方面来突破。
2、分组探究 ,信息反馈
这一环节,我先把学生分组,让其对定理及坐标表示,进行讨论、探究、交流,先组内互相启发,消化个体疑点,然后以组为单位提出疑问。如果某个问题,某个组已经解决,其它组仍是疑点,我让已解决问题的小组做一次"教师",面向全体学生讲解,教师可以适当补充点拨,这也可以说是讨论的继续。对于难度较大的倾向性问题,我准备
3、精讲点拨,解难释疑
本节课的目的是要帮助学生建立向量的坐标.要求先运用已有的知识去研究*面向量的基本定理,然后以这个定理为基础建立向量的坐标。对于定理的探究,有些学生只是从形式上加以记忆,缺乏对问题本质的理解,为了帮助学生改进学习方法,提升数学能力,我先**学生如何把*面**一向量分解成两个不共线向量的线性组合,学生会通过作图来说明这一问题。我们要强调的是,这里的向量是**向量,其起点是可以移动的,将三个向量的起点放在一起可便于研究问题.类比物理上力的分解,利用*行四边形法则,我们把向量 分解成 ,根据向量共线定理 ,存在一对实数λ1,λ2 ,使 , 从而 =λ1 +λ2 ,教师再引导学生自主归纳,从而得出*面向量基本定理。为了加深对定理的理解,我设计了如下的几个问题,学生思考回答后,教师再利用几何画板作进一步的演示。当 , 共线时,与它们不共线的向量 不能用 , 当线性表示,所以共线向量不能作为基底;当不共线向量 , ,任意 确定后,λ1,λ2是唯一确定的;我们改变向量 的大小和方向,发现 仍然可以用 , 线性表示,说明了任意向量 能分解成两个不共线向量的线性组合;改变基底 , 的大小和方向,保持向量 不变,刚才的结论仍然成立,说明了同一个向量 能用不同的基底线性表示,由此说明基底不唯一,具有可选择性。
对于向量的坐标表示,我先用火箭速度的分解引入正交分解,然后**:根据*面向量基本定理,基底是可以选择的,为了研究的方便,我们应该选取什么样的基底呢?引导学生由一般到特殊,选择*面直角坐标系中 轴和 轴上,且方向与轴的正方向同向的单位向量 做基底,那么根据刚刚得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在数对(x,y)与向量a一一对应,从而得到*面向量的坐标表示。需要说明的两点是:第一,向量的坐标表示与其分解形式是等价的,可以互相转化。第二点说明:求向量坐标的关键是构造*行四边形,确定实数x、y。学生在理解起点不在坐标原点的向量的坐标表示时会出现障碍,其原因是在直角坐标系中点和点的坐标是一一对应的,到了向量时,向量的坐标只是和从原点出发的向量一一对应,必须使学生在这种特定的场合中明白:要求点 的坐标就是要求向量 的坐标.只要结合向量相等的条件学生应该容易克服这一难点。随后,通过学案上的练习2,让学生巩固所学知识。
4、第四个环节,归纳总结,建构网络
建构**教学理论认为,知识是主体在与情境的交互作用中、在解决问题的过程中能动地构建起来的,学生应在教师指导下自主归纳出新旧知识点之间的内在联系,构建知识网络,从而培养学生的分析能力和综合能力。为此,我设计了如下的问题:
通过本节课的学习,你收获了什么?……
在学生回答的过程中,我及时反馈,评价学生课堂表现,起导向作用。
学生完成个人新知建构之后,为了帮助学生检验自己的学习过程,我设计了
5、第五个环节,当堂达标,迁移拓展
本部分检测题,紧扣目标,当堂训练,而为了尊重学生的个体差异,满足多样化学习的需要,我又分必做和选做两部分来布置题目,允许学生根据个人情况来完成。
五、我说课的最后一部分是教学设计说明:
1、贯彻了学生主体、教师主导的原则
“学案导学”要求学生主动试一试,并给予学生充分**思考的时间。学生在尝试中遇到问题就会主动地去自学课本和接受教师的指导。这样,学习就变成了学生自身的需要,使他们产生了“我要学”的愿望,在这种动机支配下学生就会依靠自己的力量积极主动地去学习。
教师通过启发、激励,诱导学生全员、全过程参与教学过程,体现教师的主导作用。
2、培养了自主探索,合作交流的能力
新的课程理念,要求学生的学习不仅仅是在理解基础上掌握和记忆知识,还要学习探索和解决问题的方法和途径。
本节课采用诱导式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以**思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学知识、形成数学能力,培养探索精神和团队意识。
我相信,通过本节课的学习,学生获取的将不仅仅是知识,获取知识的**、途径和方法,以及勇于探索、合作交流的能力,才是他们最大的收获。
向量说课稿11
各位老师好:
我是户县二中的李敏,今天讲的课题是《*面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行**,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;*面向量的坐标表示;*面向量的坐标运算。
二、高考的考点分析:
在历年高考试题中,*面向量占有重要地位,近几年更是有所加强。这些试题不仅*面向量的相关概念等基本知识,而且常考*面向量的运算;*面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标
1.会用坐标表示*面向量的加法、减法与数乘运算.
2.理解用坐标表示的*面向量共线的条件.
3.掌握数量积的坐标表达式,会进行*面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的*面向量垂直的条件.
教学重难点的确定与突破:
根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:*面向量的坐标表示及运算。难点为:*面向量坐标运算与表示的理解。我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法
根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法
根据*时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;*面向量的坐标表示;*面向量的坐标运算等方面。根据学情,所以我将指导通过“自学,探究,模仿”等过程完成本节课的学习。
六、说过程
(一) 知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=_________________
||=_______________
(二)*面向量坐标运算
1.向量加法、减法、数乘向量
设 =(x1,y1), =(x2,y2),则
+ = - = λ = .
2.向量*行的坐标表示
设 =(x1,y1), =(x2,y2),则 ∥ ________________.
(三)核心考点习题演练
考点1.*面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;
(2)求满足 =m +n 的实数m,n;
练:(20xx江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2*面向量共线的坐标表示
例2:*面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
考点3*面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为 ; 的最大值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )
【思考】两非零向量 ⊥ 的充要条件: =0 .
考点4:*面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的最大值为( )
A.6 B.7 C.8 D.9
练:(20xx,上海,12)
在*面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?
向量说课稿12
教学目标
1、了解基底的含义,理解并掌握*面向量基本定理。会用基底表示*面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析
前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备
重点难点
重点:对*面向量基本定理的探究
难点:对*面向量基本定理的理解及其应用
教学过程
4.1第一学时教学活动
活动1【导入】情景设置
火箭在升空的某一时刻,速度可以分解成竖直向上和水*向前的两个分速度v=vx+vy=6i+4j.
活动2【活动】探究
已知*面中两个不共线向量e1,e2,c是*面内任意向量,求向量
c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)
做法:
作OA=e1,OB=e2,OC=c,过点C作*行于OB的直线,交直线OA于M;过点C作*行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2.
因为OC=OM+ON,所以c=6 e1+6e2.
向量c=__6__e1+___6__e2
活动3【练习】动手做一做
请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____
(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)
由刚才的几个实例,可以得出结论:如果给定向量e1,e2,*面内的任一向量a,都可以表示成a=入1e1+入2e2.
活动4【活动】思考
问题2:如果e1,e2是*面内任意两向量,那么*面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?
生:不行,e1,e2必须是*面内两不共线向量
活动5【讲授】*面向量基本定理
*面向量基本定理:如果e1,e2是*面内两个不共线的向量,那么对于这一*面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2.我们把不共线向量e1,e2叫做这一*面内所有向量的一组基底.一个*面向量用一组基底e1,e2表示成a=l1e1+l2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.
说明:
(1)基底不惟一,关键是作为基底的两个向量不共线.
(2)由定理可将任一向量a在给出基底e1,e2的条件下进行分解,基底给定时,分解形式惟一,即l1,l2是被a,e1,e2惟一确定的数量.
活动6【讲授】*面向量基底运用
例1. 如图所示,*行四边形ABCD的对角线AC和BD交于点M,AB=a,AD=b,试用基底a,b表示MC,MA,MB和MD
活动7【讲授】向量夹角的定义
阅读教材P94,回答如下问题:
1、两个向量夹角是如何形成的?,必须要满足什么条件才是它们的夹角。
2、有向量夹角范围是多少?有夹角大小来描述一下向量同向,反向,垂直?
活动8【练习】完成《聚焦课堂》活动9【讲授】课后小结
1、*面向量基本定理
2、*面向量基本定理的运用
3、向量夹角的定义。
活动10【作业】课后作业
1、已知向量e1,e2,求做:-3e1+2e2
2、做育才报第八期专项训练1
向量说课稿13
摘要:本节课的内容是《空间向量及其加减运算》,选自普通高中课程标准实验教科书人教A版选修2-1第三章。本文就从教学内容和学生情况分析,教学目标设定,重难点设置,教学方式,教学过程以及教学反思等方面对这节课进行说明。
关键词:空间向量;加减运算;学生
一、教学内容和学生情况分析
本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容。章引言中提到了本章的主要内容和研究方法,即类比*面向量来研究空间向量的概念和运算。向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用。本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具。本小节的主要内容可分为两部分:一是空间向量的相关概念;二是空间向量的线性运算。新课标对这节内容的要求是:经历向量及其运算由*面向空间推广的过程,了解空间向量的概念,掌握空间向量的线性运算。这节课的授课班级是高二的一个理科实验班,学生在高一时就学习了*面向量,能利用*面向量解决*面几何的问题。在*面向量的教学中,我始终注重与实数的类比、数形结合等数学思想方法的渗透,不仅让学生清楚学什幺,更主要的是帮助学生理解为什幺学,怎幺学。基于此,设定了这节课的教学目标。
二、教学目标
1.理解空间向量的概念,会用图形说明空间向量的线性运算及其运算律,初步应用空间向量的线性运算解决简单的立体几何问题。
2.学生通过类比*面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由*面向空间的推广,体验数学概念的形成过程。
3.培养学生的空间观念和系统学习概念的意识。
三、教学重点与教学难点
这节课的教学重点是空间向量的概念及线性运算。在由*面向量向空间向量的推广过程中,学生对于其相同点与不同点的理解有一定的困难,所以我将这节课的教学难点设置为体会类比的数学方法的应用。
四、教学方式
采用的教学方式是通过连续的五个探究问题,启发引导学生自主完成概念的探究过程,加减运算及运算律:交换律和结合律,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点。
五、教学过程
本节课分为5个环节:引入概念,概念形成,概念深化,应用概念,归纳小结。其中重点是概念的形成和概念的深化,实际教学时间25分钟。
1.引入概念。在引入概念环节中,由一系列图片,吸引学生眼球,使学生对空间向量有个初步认识,明确空间向量无处不在,应用广泛。激发学生学习空间向量的兴趣,通过追问激发学生学习新概念的兴趣,并给出本节课具体的研究方向。这节课作为《空间向量与立体几何》一章的第一节课,希望让它也起到章节“导游图”的作用。
2.概念形成。教师引导:主要是通过类比*面向量的方法,由学生自主探究空间向量的概念,由学生从定义、表示、方向刻画、大小刻画、特殊向量、向量间的特殊关系等方面探究空间向量的概念。师生小结:我通过问题串帮助学生将概念梳理清楚,让他们体会到空间向量与*面向量的概念完全相同,只是所处的环境不同而已。以前研究的向量都位于*面内,现在他们可以在空间中任意*移了。在这个过程中让学生明确空间向量的研究方法,体会数学的严谨性。接着利用两组动画,第一个是*面内和位移的例子,第二个是教师爬教学楼的楼梯,展示空间中和位移,使学生对空间向量的加法有个初步感知。然后通过**让学生类比*面向量去定义空间向量的加法,减法运算,让学生进一步体会空间向量与*面向量之间的关系,突出教学重点。
3.概念深化。简化运算就需要研究空间向量线性运算的运算律。问题:*面向量中学习过哪些线性运算的运算律?这些运算律是不是也可以推广到空间中去呢?咱们先来看看哪些可以直接由*面结论得到(PPT给出)。学生通过探究发现由于加法交换律和分配律都只涉及到一个或两个向量,可以看作同一*面上的问题,可由*面结论直接得出;而空间中任意三个向量可能不共面,所以加法结合律还需要重新证明。接着由学生自主完成对加法结合律的证明。这是本节探究的难点之一。教师小结:通过结合律的证明能培养学生的空间观念,他们还能进一步体会空间向量中的某些问题与*面向量中相应问题的不同之处。
4.应用概念。在应用概念环节中,我设置了4道例题(PPT给出)。例1的设计意图,说明首尾相接的若干个向量的和向量是由起始向量的起点到终止向量终点的向量。如果回到起点,和为零向量。例2的设计意图是让学生初步应用空间向量的概念及其运算解决一些问题,*行六面体是空间向量加法运算的一个重要几何模型,需要加深对*行六面体的理解。同时通过例2让学生进一步猜想空间中任意一个向量是不是都能用这三个向量来表示,是不是空间中任意三个向量都能去表示别的向量,对这三个向量有什幺要求。这样为下一节的内容做铺垫。例3、例4的设计意图是帮助学生熟悉多边形法则,进一步巩固空间向量的线性运算。
5.归纳小结。在归纳小结环节中为了培养学生归纳总结的意识和能力,我首先**让学生自己总结,接着我根据学生的回答补充完善小结,总结空间向量的概念内容和研究过程,尤其强调在整个研究过程中都使用到的类比的推理方法,进一步突破这节课的教学难点。
六、教学反思
通过这节课的备课与教学我自己主要有以下几方面的收获。
1.在概念课教学中教师作用的体现。这节课的知识本身是很容易的,对于学习程度好的学生自学应该也没有问题,那幺教师在这节课中的作用是什幺?我想作为教师,需要帮助学生从整体上把握知识脉络,关注这部分内容在整个数学知识体系中的地位和作用。这不仅能够让学生更加深刻地理解概念更加自如地运用概念,还能在这个过程中对学生进行数学思想方法的渗透。帮助学生站在一个更高的角度,站在数学发展的角度看问题,对学生的长远发展是有好处的。本节课设计的一个特点就是从整体上进行了设计,关注学生已有的认知结构,并在此基础上由知识浅层挖掘出其背后所蕴含的数学概念体系,强调类比的方法,这也是形成新的数学概念的重要方法之一。
不足之处:①这节课的知识基础是*面向量的相关知识,而*面向量是学生在高一时学习的内容,时隔半年多之后学生对这部分知识遗忘非常严重,我们又没有时间再对*面向量作细致的复习,所以学生反应不是很快,重难点突破的有点吃力;②从自身专业素质来说,语言比较随意,不够专业,数学是严谨的学科,语言专业性急需提高。
2.新课标对学生掌握知识螺旋上升要求的实现。在教学过程中,每一个空间向量问题的引入都以*面框架为基础,这是在学习新知识时对相关旧知识的一个复习、巩固与提高的过程。
向量说课稿14
一、教材分析:
(一) 教材的地位、作用:
向量作为一种基本工具,在数学解题中有着极其重要的地位和作用。利用向量知识,可以解决不少复杂的的代数几何问题。《空间向量数量积及其应用》,计划安排两节课时,本节课是第2课时。也就是,在有了*面向量数量积公式,空间向量坐标表示,以及空间向量数量积的基础知识之后,本节课是进一步去认识、掌握空间向量数量积的变形公式,然后,围绕着空间向量的几何应用展开讨论和研究。
通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难。用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高。
(二) 教学目标:
知识目标:① 掌握空间向量的数量积公式及向量的夹角公式;
② 运用公式解决立体几何中的有关问题。
能力目标:① 比较*面、空间向量,培养学生观察、分析、类比转化的能力;
② 探究空间几何图形,将几何问题代数化,提高分析问题、解决问题的能力。
情感态度、价值观目标:
① 通过师生的合作与交流,体现教师为主导、学生为主体的教学模式;
② 通过空间向量在立体几何中的应用,提高学生的空间想象力,培养学生探索精神和创新意识,让学生感受数学,体会数学美的魅力,激发学生学数学、用数学的热情。
(三)教学重点、难点:
重点:空间向量数量积公式及其应用。
难点:如何将几何问题等价转化为向量问题;在此基础上,通过向量运算解决几何问题。
二、教法、学法分析:
教法:采取启发引导、形数转化、反馈评价等方式;
学法:体现自主探索、观察发现、类比猜想、合作交流等形式。
三、教学过程分析:
根据二期课改的精神,本着“以学生发展为本”的教学理念,结合学生实际,对教学内容作了如下的调整:基于教材中主要是运用向量夹角求异面直线所成的角,所以,首先让学生掌握教材所要求的基本面;其次,鉴于向量兼容了代数、几何的特色,有着其独特的魅力和发展前景,为进一步让学生感受“向量法”的优势,安排了两个分别运用向量的“代数运算”和“几何运算”来处理空间几何问题的典型例题,为解决空间的度量、位置关系问题找到一种新方法,进一步拓展了学生的思维渠道。以下,是我制定的教学流程:
创设情境,提出问题 类比猜想,探求新知 公式运用,巩固提高 回顾小结,整体感知 课外探究,激发热情
教学过程如下:
(一) 创设情境:
给出问题一:已知在正方体ABCD-A1B1C1D1中,AE=EA1,
D1F= ,如何确定 的夹角?
[设计意图]:问题的给出,一时之间可能会使学生感到突然,但预计应该会让他们联想到*面向量的夹角公式,由此作一番类比猜想,起到温故知新的作用。
[处理过程]:
设问:*面向量的夹角问题如何求得的?
是否可将*面内求得两向量的夹角公式推广到空间?公式的形式是否会有所变化?
学生活动:回顾*面向量数量积、向量夹角公式及其坐标表示;类比猜想,认识空间向量的夹角问题。
(二) 建构数学:(板书)
对于空间两个非零向量
(三) 公式运用:
1、问题一的解决:
①学生活动:解决上述问题。
②.变式运用:已知在正方体ABCD-A1B1C1D1中,
AE=EA1,D1F= ,求BE、FD所成的角?
[设计意图]:初步体会立几法、向量法来解决几何问题,并注意区分两个向量夹角与两条异面直线间的夹角。
[处理过程]:(由以往教学实践,部分学生可能想到用传统的几何方法)
设问:如何用向量方法求BE、FD所成的角?
(引导学生建立空间直角坐标系,求得B、D、E、F的坐标,进一步得到 的坐标,最后代入空间向量夹角公式…计算得出的向量夹角是钝角,而异面直线成锐角。)
[评价]:
① 异面直线所成的角可由向量的夹角来解决,可见,解决立体几何的有关问题时,方法并不唯一。在此,可以比较向量法和几何法,选择适当方法,解决问题。
② 两个向量夹角与两条异面直线间的夹角是有区别的。
2.问题二的探究:
如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,
AC=1,CB= ,侧棱AA1=1,侧面AA1B1B的
两条对角线交点为D,B1C1中点为M。
(1)求证:CD⊥*面BDM;
(2)求面B1BD与面CBD所成二面角的大小。
[设计意图]:通过立几法、向量法的尝试,让学生明显感受到运用向量法的优越性。
[处理过程]:
① 学生活动:让学生先试行用传统方法解决问题,估计不少学生会感到有一定困难。
[设问]:类似于上题做法,能否用向量法解决这一问题?
② 学生活动:进入思考讨论
③ 相互分析交流——达成共识:
(i) 证明线面垂直可转化为证线线垂直,进一步转化为证向量间的垂直,即向量的数量积等于零;
(ii) 求二面角的*面角,转化为求那两条与二面角的棱垂直的射线所成的角,在此,可构造两向量(提醒其方向,及向量始点的**、不唯一性),然后求其夹角,从而解决问题。
④ 解题过程:
[评价]:“传统解法”需作辅助线,有时不易作出;而使用“向量解法”,程序化强,便于操作,求解的关键在于建立适当的空间直角坐标系(基本原则:使图中尽可能多的点落在坐标轴上,这样便于用坐标表示相关的点及向量),然后利用坐标系确定各相关的点及向量坐标,再借助向量坐标运算法则及公式,无需添加辅助线,即可达到解题的目的。
3.小结,利用空间向量解决立体几何中有关问题的一般步骤:(学生回答,教师补充,板书)
(1)适当地构建空间直角坐标系;
(2)用坐标表示相关的点、空间向量;
(3)进行空间向量的运算;
(4)体炼共性,转化为几何结论。
(四) 归纳总结:
引导学生总结本节课的收获,相互交流。
(五) 课外探究:
(这是20xx年高考题)如图,已知*行六面体ABCD-A1B1C1D1的
底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°,
当 的值是多少时,能使A1C⊥*面C1BD,请给出证明。
[设计意图]:这是20xx年高考第18题第3小题,是个探索型问题。把它放在这里,一方面:在高二阶段,接触到高考题,学生的兴趣颇高,可调动学生的学习热情,增强学生的主体意识;另一方面,解题中,再次让学生感受到:单纯用立体几何知识解答较繁,而利用向量法去思考,思路清晰,目标明确,从而**降低了求解的难度,同时亦可激发他们不断求知、不断探索的欲望。
(六) 布置作业
[板书设计]
课题引入: 问题一的解决: 课外探究:
空间向量数量积、夹角公式:
问题二的解决: 布置作业:
用向量解几何题的步骤:
四、教学反思:
本节课的设计,力求体现“以学生发展为本”的教学理念。教学过程中,以问题为载体,学生活动为主线,为学生提供了探究问题、分析问题、解决问题的活动空间。例题内容的安排上,注意逐步推进,力求使教师的启发引导与学生的思维同步,顺应学生学习数学的过程,促进学生认知结构的发展;另外,课外探究题给学生留下广阔的思维空间和拓展探索的余地,让学生体验到数学活动充满了探索和创造。在教学过程中,注意到培养学生合作交流的意识和能力。
向量说课稿15
一、 教材分析
1.本课的地位及作用:*面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究*面中的距离、垂直、角度等问题提供了全新的**。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。
2学生情况分析:在此之前学生已学习了*面向量的坐标表示和*面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节教学目标确定为:
1、理解掌握*面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题
2、经历根据*面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。
教学重点
*面向量数量积的坐标表示及应用
教学难点
探究发现公式
二、 教学方法和**
1教学方法:结合本节教材浅显易懂,又有前面*面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生**思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。
2教学**:利用多**辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。
三、 学法指导
改善学生的学习方式是高中数学课程追求的基本理念。**思考,自主探索,动手实践,合作交流等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。以激发学生的学习兴趣和创新潜能,帮助学生养成**思考,积极探索的习惯。为了实现这一目标,本节教学让学生主动参与,让学生动手,动口、动脑。通过思考、计算、归纳、推理,鼓励学生多向思维,积极活动,勇于探索。具体体现在:1、通过提出问题,把问题的求解与探究贯穿整堂课,使学生在自主探究中发现了结论,推广了命题,使学生感到成果是自己得到的,增强了成就感,培养了学生学好数学的信心和良好的学习动机。2、通过数与形的充分挖掘,通过对向量*行与垂直条件的坐标表示的类比,培养了学生数形结合的数学思想,教给了学生类比联想的记忆方法。
四、教学程序
本节课分为复习回顾、定理推导、引申推广、例题讲析、练习与小结五部分。
复习回顾部分通过两个问题,复习了与本节内容相关的数量积概念,为本节内容的学习作了必要的铺垫。
定理推导部分通过设问,引出寻求向量的数量积的坐标表示的必要性,引入课题,并引导学生应用前述知识共同推导出数量积的坐标表示。
引申推广部分,让学生自主推导出向量的长度公式,向量垂直条件的坐标表示、夹角公式等三个结论,强化了学生的动手能力和自主探究能力。
例题讲析,通过四道紧扣教材的例题的精讲,突出了结论的应用,也起到了示范作用。
练习及小结:通过练习题验收教学效果,突出训练主线,小结部分画龙点睛,强调本节重点。再结合课后作业,进一步实现本节课的教学目的。同时小结也体现主体性,由教师提出问题学生总结得出。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除