同底数幂的乘法

同底数幂的乘法(精选15篇)

同底数幂的乘法 篇1

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1 计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2 计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93 练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94 A组3~5;P95 B组1~2.

  参考答案

  略.

  九、板书设计

  投影幂

  例1 例2 练习

  小结:

同底数幂的乘法 篇2

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1 计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2 计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93 练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94 A组3~5;P95 B组1~2.

  参考答案

  略.

  九、板书设计

  投影幂

  例1 例2 练习

  小结:

同底数幂的乘法 篇3

  (一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入.

  2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

  表示的意义是什么?其中 、 、 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

  个

  .

  .

  提问: 表示什么? 可以写成什么形式?______________

  答案: ;

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 与 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的运算.

  请同学们先根据自己的理解,解答下面3个小题.

  ;

  ; .

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  ( 都是正整数)

  (板书)

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结: ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  同底数幂相乘 底数不变、指数相加

  运算形式 运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 ( 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1 计算:

  (1) (2)

  例2 计算:

  (1) (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ① ② ③

  ④ ⑤ ⑥

  (2)计算:

  ① ② ③

  ④ ⑤ ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2) (3)

  (4) (5) (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1) (2)

  (3) (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则 .

  (2) ,则 .

  (3) ,则 .

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  P94 1,2.

  参考答案

  略.

同底数幂的乘法 篇4

  (一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入.

  2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

  表示的意义是什么?其中 、 、 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

  个

  .

  .

  提问: 表示什么? 可以写成什么形式?______________

  答案: ;

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 与 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的运算.

  请同学们先根据自己的理解,解答下面3个小题.

  ;

  ; .

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  ( 都是正整数)

  (板书)

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结: ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  同底数幂相乘 底数不变、指数相加

  运算形式 运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 ( 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1 计算:

  (1) (2)

  例2 计算:

  (1) (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ① ② ③

  ④ ⑤ ⑥

  (2)计算:

  ① ② ③

  ④ ⑤ ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2) (3)

  (4) (5) (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1) (2)

  (3) (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则 .

  (2) ,则 .

  (3) ,则 .

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  P94 1,2.

  参考答案

  略.

同底数幂的乘法 篇5

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1 计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2 计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93 练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94 A组3~5;P95 B组1~2.

  参考答案

  略.

  九、板书设计

  投影幂

  例1 例2 练习

  小结:

同底数幂的乘法 篇6

  同底数幂的乘法(一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入同底数幂的乘法.

  2.通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习同底数幂的乘法的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

  表示的意义是什么?其中 、 、 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

  个

  .

  .

  提问: 表示什么? 可以写成什么形式?______________

  答案: ;

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 与 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的同底数幂的乘法运算.

  请同学们先根据自己的理解,解答下面3个小题.

  ;

  ; .

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  ( 都是正整数)

  (板书)

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结:   ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  同底数幂相乘   底数不变、指数相加

  运算形式     运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 ( 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1 计算:

  (1)    (2)

  例2 计算:

  (1)    (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ①    ②    ③

  ④    ⑤    ⑥

  (2)计算:

  ①    ②    ③

  ④   ⑤   ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1)  (2)  (3)

  (4)  (5)   (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1)    (2)

  (3)   (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则 .

  (2) ,则 .

  (3) ,则 .

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  p94  1,2.

  参考答案

  略.

同底数幂的乘法 篇7

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1 计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2 计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93 练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94 A组3~5;P95 B组1~2.

  参考答案

  略.

  九、板书设计

  投影幂

  例1 例2 练习

  小结:

同底数幂的乘法 篇8

  教学目标:1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

  教学重点和难点:幂的运算性质.

  课堂教学过程设计:

  一、运用实例 导入新课

  引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

  学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

  要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第七章 整式的乘除)

  本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

  为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

  二、复习提问

  1.乘方的意义.

  2.指出下列各式的底数与指数:

  (1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.

  其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则

  计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)

  =105.

  2.引导学生建立幂的运算法则

  将上题中的底数改为a,则有

  a3·a2=(aaa)·(aa)

  =aaaaa

  =a5,

  即 a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用举例 变式练习

  例1 计算:(1)107×104; (2)x2·x5.

  解:(1)107×104=107+4=1011; (2)x2·x5=x2+5=x7.

  提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

  例2 计算:(1)-a2·a6;  (2)(-x)·(-x)3;  (3)ym·ym+1.

  解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;

  (2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;

  (3)ym·ym+1=ym+(m+1)=y2m+1.

  师生共同解答,教师板演,并提醒学生注意:(1)中-a2与(-a)2的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中(-x)4=x4学生如不理解,可先引导学生回忆学过的有理数的乘方.

  五、课堂练习

  计算:(1)105·106; (2)a7·a3; (3)y3·y2;

  (4)b5·b; (5)a6·a6; (6)x5·x5.

  对于第(2)小题,要指出y的指数是1,不能忽略.

  计算:(1)y12·y6; (2)x10·x; (3)x3·x9;

  (4)10·102·104; (5)y4·y3·y2·y; (6)x5·x6·x3.

  (1)-b3·b3; (2)-a·(-a)3;

  (3)(-a)2·(-a)3·(-a); (4)(-x)·x2·(-x)4.

  六、小结

  1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

  2.解题时要注意a的指数是1.

  3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.

  4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.

  5.若底数是多项式时,要把底数看成一个整体进行计算

  教后记:

  教学时不要生硬地提出问题,应力求顺乎自然、水到渠成.讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起.这节课就是以此为宗旨引入新课的.

同底数幂的乘法 篇9

  (一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入.

  2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

  表示的意义是什么?其中 、 、 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

  个

  .

  .

  提问: 表示什么? 可以写成什么形式?______________

  答案: ;

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 与 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的运算.

  请同学们先根据自己的理解,解答下面3个小题.

  ;

  ; .

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  ( 都是正整数)

  (板书

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结: ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  同底数幂相乘 底数不变、指数相加

  运算形式 运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 ( 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1 计算:

  (1) (2)

  例2 计算:

  (1) (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ① ② ③

  ④ ⑤ ⑥

  (2)计算:

  ① ② ③

  ④ ⑤ ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2) (3)

  (4) (5) (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1) (2)

  (3) (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则 .

  (2) ,则 .

  (3) ,则 .

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  P94 1,2.

  参考答案

  略.

同底数幂的乘法 篇10

  (一)

  一、素质教育目标

  1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

  2.能够熟练运用性质进行计算.

  3.通过推导运算性质训练学生的抽象思维能力.

  4.通过用文字概括运算性质,提高学生数学语言的表达能力.

  5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

  二、学法引导

  1.教学方法:尝试指导法、探究法.

  2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

  三、重点·难点及解决办法

  (-)重点

  幂的运算性质.

  (二)难点

  有关字母的广泛含义及“性质”的正确使用.

  (三)解决办法

  注意对前提条件的判别,合理应用性质解题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.复习幂的意义,并由此引入.

  2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义.

  3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

  七、教学步骤

  (-)明确目标

  本节课主要学习的性质.

  (二)整体感知

  让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

  (三)教学过程

  1.创设情境,复习导入

  表示的意义是什么?其中 、 、 分别叫做什么?

  师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书.

  个

  .

  .

  提问: 表示什么? 可以写成什么形式?______________

  答案: ;

  【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

  2.尝试解题,探索规律

  (1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

  学生回答:(1) 与 的积(2)底数相同

  引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像 这样的运算.

  请同学们先根据自己的理解,解答下面3个小题.

  ;

  ; .

  学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

  【教法说明】

  (1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

  (2)培养学生运用已有知识探索新知识的热情.

  (3)体现学生的主体作用.

  3.导向深入,揭示规律

  计算 的过程就是

  也就是

  那么 ,当 都是正整数时,如何计算呢?

  ( 都是正整数)

  (板书

  学生活动:同桌研究讨论,并试着推导得出结论.

  师生共同总结: ( 都是正整数)

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  同底数幂相乘 底数不变、指数相加

  运算形式 运算方法

  提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

  学生活动:观察 ( 都是正整数)

  【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

  4.尝试反馈,理解新知

  例1 计算:

  (1) (2)

  例2 计算:

  (1) (2)

  学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处.

  【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

  5.反馈练习,巩固知识

  练习一

  (1)计算:(口答)

  ① ② ③

  ④ ⑤ ⑥

  (2)计算:

  ① ② ③

  ④ ⑤ ⑥

  学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2) (3)

  (4) (5) (6)

  学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

  【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“ ”表示“ ”的一次幂.

  6.变式训练,培养能力

  练习三

  填空:

  (1) (2)

  (3) (4)

  学生活动:学生思考后回答.

  【教法说明】这组题的目的是训练学生的逆向思维能力.

  练习四

  填空:

  (1) ,则 .

  (2) ,则 .

  (3) ,则 .

  学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

  【教法说明】此组题旨在增强学生应变能力和解题灵活性.

  (四)总结、扩展

  学生活动:1.同底数幂相乘,底数_____________,指数____________.

  2.由学生说出本节体会最深的是哪些?

  【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  八、布置作业

  P94 1,2.

  参考答案

  略.

同底数幂的乘法 篇11

  今天我讲了一节《5.1同底数幂的乘法一》。我在备课的时候准备的很充足,考虑到了学生在课堂上将出现的各种情况。讲的时候很顺利,学生的状态和他们的发言不怎么令我满意。还没拿过别的班级上过数学课,于是我借用了初一<13>班,从来没上过别的班级,感觉就是不大一样,当然上了这节课我也有了很大的进步。

  我在备课时是这样设计的:首先,这节课是在上学期学习了幂之后有关的一节课,学生对于幂的了解都很深,所以并没有进行巩固复习,而是提出问题:同学们,谁知道太阳距离我们地球有多远吗?然后再跟学生一起解决:光的速度约为3×105千米/秒,太阳光照射到地球大约需要5×102秒.地球距离太阳大约有多远?设置悬念,引发学生的好奇心,充分激起学生的兴趣,唤起学生的学习热情,整个设计突出体现学生的参与意思,让学生在运算的过程中发现运算法则。学生不是被动地接受现成的书本知识,而是在经验过程中主动探索,发现经验中事物之间的联系过程。同时整个设计过程也体现了从特殊到一般,再从一般到特殊的重要数学思想。这有利于学生养成良好的思维习惯。在整个设计过程中,我也设计了判断题、选择题和变式题。一则有利于避免错误;二则可以通过此来培养学生逆向思维来提高认识。最后,根据学生情况,分层次留作业。

  对于本节课我的感受是:当有人听课的时候,我还是有一点点紧张。如上课时把下面这道题忘了讲解就跳过去了已知:am=2,an=3.求am+an=?.

  这倒不影响整节课。所以有人听课时不要太过于注重课堂的流程,这样往往达不到预想的效果,只要真正做到把知识开心的传授给学生才是讲课的根本。

同底数幂的乘法 篇12

  同底数幂的乘法()

  教学目标

  1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

  2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

  教学重点和难点

  幂的运算性质.

  课堂教学过程设计

  一、运用实例 导入新课

  引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

  学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

  要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

  本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

  为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

  二、复习提问

  1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

  2.指出下列各式的底数与指数:

  (1)34; (2)a3; (3)(a+b)2; (4)(-2)3; (5)-23.

  其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则

  计算103×102.

  解:103×102=(10×10×10)+(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)

  =105.

  2.引导学生建立幂的运算法则

  将上题中的底数改为a,则有

  a3·a2=(aaa)·(aa)

  =aaaaa=a5, 即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有

  =am+n, 即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算? (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用举例 变式练习

  例1 计算:

  (1)107×104; (2)x2·x5.

  :(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.

  提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

  课堂练习

  计算:

  (1)105·106; (2)a7·a3; (3)y3· y2;

  (4)b5· b; (5)a6·a6; (6)x5·x5.

  例2 计算:

  (1)23×24×25;(2)y· y2· y5.

  :(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.

  对于第(2)小题,要指出y的指数是1,不能忽略.

  五、小结

  1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

  2.解题时要注意a的指数是1.

  六、作业

同底数幂的乘法 篇13

  [课题]

  义务教育课程标准实验教科书数学(北师大)七年级下册第一章第3节

  一、教学目的:

  1、在一定的情境中,经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

  2、了解同底数幂的乘法运算性质,并能把解决一些简单的实际问题。

  二、教学过程实录:

  (铃响,上课)

  教师:在an这个表达式中,a是什么?n是什么?

  当an作为运算时,又读作什么?

  学生:a是底数,n是指数,an又读作a的n次幂。

  教师:(多媒体投影出示习题)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看能发现什么。

  计算:

  (1) 22 × 23 (2) 54×53

  (3) (-3)2 × (-3)2 (4) (2/3)2×(2/3)4

  (5) (- 1/2)3 × (- 1/2)4 (6) 103×104

  (7) 2m × 2n (8)(1/7)m×(1/7)n (m,n是正整数)

  (学生开始做题,互相研究、讨论,气氛热烈,教师巡视、指点,待学生充分讨论有所发现后,提问有何发现)

  学生A:根据乘方的意义,可以得到:

  (1) 22 × 23 = 25

  (2) 54 × 53 =57

  (3) (-3)2 × (-3)2 = (-3)5……

  教师:刚才A同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?

  学生:计算准确。

  教师:通过刚才的计算和研究,发现什么规律性的结论了吗?

  学生 B:不管底数是什么数,只要底数相同,结果就是指数相加。

  教师:请你举例说明。

  学生B到前边黑板上板书:

  22×23=(2×2)×(2×2×2)=2×2×2×2×2=25

  底数不变,指数2+3=5

  教师:其他几个题是否也有这样的规律呢?特别是后两个?

  学生:都有这样的规律。

  教师:请以习题(7)为例再加以说明。

  学生C到前边黑板上板书:

  2m × 2n =(2×2×…×2×2×2)×(2×2×…×2)=(2×2×…×2)=2m+n

  m个2 n个2 (m + n)个2

  底数2不变,指数m + n。

  教师:大家对刚才两个同学发现的规律有无异议?

  学生:没有。

  教师:那么,下面大家一起来看更一般的形式:am · an(m,n都是正整数),运用刚才得到的规律如何来计算呢?(学生举手,踊跃板演)

  学生D到前边黑板上板书:

  am × an =(a×a×…×a×a×a)×(a×a×…×a)=(a×a×…×a)=am+n

  m个a n个a (m + n)个a

  教师:既然规律都是相同的,能否将中间过程省略,将计算过程简化呢?

  学生:能。

  教师:将中间过程省略,就得到am · an =am+n(m,n 都是正整数)

  在这里m,n 都是正整数,底数a 是什么数呢?

  学生1:a是任何数都可以。

  学生2:a必须是有理数。

  学生3:a不能是0。

  教师:既然大家对底数a是什么样的数意见不统一,下面大家代入一些数实验一下,然后互相交流,讨论一下。(学生纷纷代入数值实验、讨论,课堂气氛热烈)待学生讨论后:

  教师:请得到结论的同学发表意见。

  学生1:底数可以是任何数,但我们学的数都是有理数,所以a是任意有理数。

  学生2:底数a可以是字母。

  学生3:底数a可以是代数式。

  教师:刚才几个同学说的很好,底数a确实可以是任何数,将来我们学的数不都是有理数,另外底数a还可以代数式。

  教师:请大家思考,刚才我们一起研究的这种乘法应该叫什么乘法呢?

  学生:同底数幂的乘法。

  教师:刚才大家通过计算,互相研究得到的是同底数幂的乘法运算的方法,现在大家思考一下,如何用你的语言来叙述这个运算的方法呢?(学生积极思考,教师板书课题后提问)

  学生1:底数不改变,指数加起来。

  学生2:把底数照写,指数相加。

  学生3:底数不变,指数相加.

  教师:(边叙述边板书)刚才几个同学归纳的很好,同底数幂相乘,底数不变,指数相加。

  教师:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请改正。(投影出示判断题)

  (1)a3·a2=a6 (2)b4·b4=2b4

  (3)x5+x5=x10 (4)y7·y=y8

  教师逐个提问学生解答。

  教师:接下来,运用同底数幂的乘法来做下面的例题(投影出示例题)

  例1:计算(1) (-3)7×(-3)6 (2)(1/10)3×(1/10)

  (3)-x3·x5 (4)b2m·b2m+1

  两名同学到前面来板演,其他同学练习,教师巡视指点,待全体同学做完,对照板演改错,强调解题中的注意问题。

  教师:现在我们一起来运用本课所学的知识解决一个实际问题。(投影出示课本引例)

  光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107秒计算,比邻 星与地球的距离大约是多少千米?

  一名同学到前面板演,其他同学练习,待学生做完后发现板演同学有错误。

  教师:大家一起来看王鑫同学的板演,发现有问题的请发言。

  学生李某:最后结果37.983×1012(千米)是错的,不符合科学技术法的要求。

  教师:请你给他改正。

  学生李某到前面改正3.7983×1013(千米)

  教师:科学技术法,如何记数,怎样要求?

  学生王某:把一个较大的数写成a×10n,其中1≤a<10。

  教师:现在大家一起来想一想:am · an· ap等于什么?(m,n,p是正整数)(全体学生举手,要求发言)

  学生高某:am · an· ap=am + n + p

  教师:现在我们大家来互相考一考,请每位同学为你的同桌出三道同底数幂乘法的计算题,计算量不要太大,如果同桌出的题你全对,而你出的题同学有错,你就获胜。(同学之间互相出题,气氛热烈,效果较好)

  待学生完成后,教师引导学生分析出错的原因,强调注意问题。

  教师:好了,现在让我们一起来回顾一下本节课我们研究的内容,有什么收获和体会,大家一起来谈一谈。

  学生1:我们学习了同底数幂的乘法,我会做同底数幂乘法的计算题。

  学生2:我学会了如何进行同底数幂的乘法,底数不变,指数相加。

  学生3:我们能运用同底数幂的乘法来解决实际问题。

  学生4:大家一起研究、讨论、交流、学习很快乐。

  学生5:同学之间互相考一考,方法很好,等于一下做了6个题,感觉还不多,愿意做,挺有意思。

  教师:大家谈的都非常好!

  布置作业,下课!

同底数幂的乘法 篇14

  同底数幂的乘法(二)

  一、教学目标

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程

  1.创设情境、复习导入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1 计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2 计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93 练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业

  P94 A组3~5;P95 B组1~2.

  参考答案

  略.

  九、板书设计

  投影幂

  例1 例2 练习

  小结:

同底数幂的乘法 篇15

  课 题:8.1 同底数幂的乘法

  学习目标:理解同底数幂相乘的法则并会运用。

  学习重点:同底数幂的乘法运算

  学习难点:同底数幂的乘法法则的推导

  学习过程:

  一、忆旧迎新

  1、你能用式子说明乘方的意义吗?

  (1)把下列各式写成幂的形式

  ①10×10×10 ②3×3×3×3 ③a•a•a•a•a ④ a•a•a…a

  n个a

  (2)指出式子an的各部分名称

  2、问题:“神威1”计算机每秒可进行3.84×1012次运算,它工作1h(3.6×103s)

  共进行了多少次运算?

  3.84×1012×3.6×103 = 3.84×3.6×1012×103 = ?

  解决上述问题,关键在于求出:1012×103 = ?即怎样计算同底数幂的乘法。同学们现在做这题可能会感到困难,相信大家学过下面的内容后就可以解决。

  二、自学探究:探究同底数幂乘法法则

  1、做一做:(完成下表)

  算 式运算过程结果

  22×23(2×2)×(2×2×2)25

  103×104

  a2•a3

  a4•a5

  2、观察上表,你发现了什么?

  (1)以上四个算式的共同特点是同底数幂相乘,计算结果的底数、指数,与已知算式中的底数、指数之间的关系是______________________

  (2)根据以上发现,你能直接写出以下各算式的结果吗?

  1012•108 =_______ (13 )10•(13 )7 =______ a5•a12 =______

  (- 15 )m •(- 15 )n =_________

  (3)得出结论:一般地,如果字母m、n都是正整数,那么

  am•an = (aaa…a)•(a•a•a…a)(______的意义)

  ___个a ___个a

  = a•a•a…a (乘法结合律) = am+n (_______的意义)

  _____个a

  幂的运算性质1:am•an = am+n (m、n是正整数)

  你能用语言描述这个性质吗?___________________________

  (4)注意:这里的底数a可以是任意的实数,也可以是单项式或多项式

  (5)议一议:m、n、p是正整数,你会计算am•an •ap吗?

  3、法则运用

  例1、 计算: (1) (2)(-3)2×(-3)7 (3)106•105•10

  (4)x3•xm (5)(a+b)4•(a+b) (6)x2•(-x)5

  想一想:(1)上述6个小题中,是否都是同底数幂相乘?哪些是?哪些不是?(2)不是同底数幂的题底数有何特点?还能用同底数幂的乘法法则进行运算吗?(3)在第(3)(5)题中的最后一因数10与(a+b)是否没有指数?

  例2、 计算:(1)y4•y-y2•y3 (2)a4•a3•a2 + a6•a2•a

  分析:这里是同底数幂相乘与整式加减的混合运算,按照先乘法后加减的顺序进行。

  三、反馈练习:

  1、课本p47练习1、2

  2、计算:(1)2×24-22×23 (2)m7•m+m3•m2•m3

  四、学习提升:

  1、想一想:26=24•2x x=_______你能把am+n分解成两个幂的积吗?

  用一用:2m=3 , 2n=4, 求2m+n的值。

  2、(1)若xm-2•xm+2=x10,m=_______ (2)22x+1=8,则x=________

  五、学后反思:

  1、本节课你学到了什么?

  2、学过本节你的问题有哪些?你的困惑是什么?

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除