《等腰三角形》获奖说课稿 (菁选3篇)

《等腰三角形》获奖说课稿1

  1、教材的地位与作用

  等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

  2、教学重点和难点

  本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。

  二、说教学目标

  1、学情分析

  我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。

  2、三维目标

  根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征 ,我制定如下目标:

  知识与技能目标:

  了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。

  过程与方法目标:

  通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。

  情感态度与价值观目标:

  通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在**思考的同时能够认同他人。感受合作交流带来的成功感,树立自信心。

  三、说教法与学法

  1、教法

  根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。

  2、学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。

  四、说教学流程

  《数学课程标准》强调,教师应发扬教学**,成为学生数学学习活动的**者、引导者、合作者。因此本节课我分以下六个环节**教学。

  (一)创设情境,激发兴趣。

  1、多**展示房屋人字架、艾佛尔铁塔、龙塔、***银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形? (等腰三角形、四边形、梯形)

  2、四幅图中都有哪种几何图形?(等腰三角形)

  (通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)

  ァ(二) 观察实物,形成概念。

  活动1:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。

  接着,我利用电脑演示等腰三角形定义的数学语言表达方式。

  (让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力。同时也能培养学生正向思维和逆向思维的能力。)

《等腰三角形》获奖说课稿2

  一、 教材分析

  (一)、教材内容的地位和作用

  《分割等腰三角形》是新教材第十四章《三角形》之后的探究课,我根据本校班级学生基础知识掌握良好、认知能力良好但是思维品质缺乏、尖子生凤毛麟角等实际情况下,降低要求设计的一节课,三角形是*面几何最简单的直线型封闭图形,三角形的知识是进一步探究学习其他图形性质的基础;这个学习阶段,处在是演绎几何向论证几何的过渡期,本章对三角形的研究呈现从一般到特殊的过程,而等腰三角形对于学生学习和研究轴对称性具有重要意义。本节课《分割等腰三角形》的设计也遵循了这个规律,从研究一般三角形到等腰三角形,探究过程中还可以帮助学生理解和掌握运用三角形知识,通过探究活动,不仅加强探索实践精神,而且还让学生感受到我国古老的数学文明,激发探索热情。

  (二)、教学目标

  根据新的《课程标准》要求和教材分析,结合本班学生实际情况,制定如下教学目标:

  1、学会探究把一个一般的三角形分成两个等腰三角形的条件,进而会探究将一个等腰三角形分割成两个等腰三角形,计算可以被分割的等腰三角形的度数。

  2、体现数形结合、分类讨论的思想。

  3、培养学生的自主探究的意识,初步掌握探究的一般思路和**思考的习惯、提高解决问题的能力。

  (三)教学重点、难点

  教学重点、难点:探究把一个一般的三角形分割成两个等腰三角形的思路。

  探究把一个一般的三角形分割成两个等腰三角形的一般规律。

  二、 教法、学法分析

  本节课涉及的知识点有等腰三角形的“等边对等角”、“等角对等边”、“三角形内角和”定理(“三角形一个外角等于和它不相邻的两个内角之和”定理),都是前阶段学生经常使用的熟悉知识,计算分割好的三角形中角之间的关系应该不难,因此本节课将用较多的时间引导学生如何根据图形探究分割的方法和规律,教师以多**为教学*台,通过精心设计问题和有效的激励机制充分调动学生的学习积极性,达到事半功倍的教学效果。而学生也在老师的鼓励引导下,小结方法,通过小组讨论等方式体会知识的应用和数学思考的方法增强学习的成就感和自信心,培养学生的探索精神和探究能力。

  三、教学程序设计

  教学过程

  设计思路和各环节分析

  (一) 展示教材第110页例题3,以回顾作为引入:

  例3:如图 点D在⊿ABC的边AC上,已知∠A=100°,∠ABC=60°∠ABD=40°。试指出图中相等的线段并说明理由。

  **:1、本题的⊿ABC是一个一般三角形,BD将此三角形分割成了两个等腰三角形,若将题目改为“已知⊿ABC中∠A=100°,∠ABC=60°”你能画直线,将此三角形分割成两个等腰三角形吗?

  提示:(1)能否过两个顶点画直线(否定)

  (2)不过任何顶点画直线?(过两边则一为三角形另一个为四边形,否定)

  (3)能否经过最小角的顶点画直线?(否定)

  结论一:过三角形一个顶点画直线,保留最小角。

  2、是不是所有的三角形都可以分成两个等腰三角形?如果不是,则要满足什么条件?

  (二) 探索交流,获得新知

  如图,△ADC 是等腰三角形,延长AD到B,如果假定△BCD也是等腰三角形,则有以下三种情况,即 (1)BD=DC ; (2)CD=BC ; (3)BD=BC。

  下面分别加以讨论。

  (1) 如果BD=DC,则有∠B=

  ∠BCD 。

  又因为AD=DC ,所以∠A=∠ACD 。

  所以∠A+∠B+∠ACB =180°。

  所以 2∠ACB =180°,∠ACB =90°。

  所以 这个三角形必定是直角三角形,即直角三角形一定可以被分割成两个等腰三角形。

  (2)如果CD=BC,设∠A =α,如图因为 AD=DC,所以∠ACD =α,∠BDC=∠A+∠ACD=2α,而因为CD=BC,所以∠B =∠BDC = 2α,所以 ∠B =2∠A。

  所以 这个三角形必定有一个角是另一个的2倍。

  (3)如果BD=BC,设∠A =α,如图 同上推得∠BDC=2α。

  因为 BD=BC,所以∠BCD =∠BDC=2α,

  所以∠ACB=∠ACD+∠DCB=α+2α=3α,即∠AC B= 3∠A。

  所以 这个三角形必定有一个角是另一个的3倍。

  结论二:一个任意三角形具备下列三个条件之一就可以被分割成两个等腰三角形:

  ① 一个角是90°,

  ② 一个角是另一个角的2倍,

  ③ 一个角是另一个角的3倍,

  三、尝试实践

  给定一张等腰三角形纸片,剪一刀后,被分成两个等腰三角形纸片,这个原等腰三角形的每个内角角是几度?把所有符合要求的等腰三角形尽可能的列举出来。

  分析:分类(1)顶角比底角大时,经过等腰三角形顶角的顶点画直线(保留最小角原则)

  1、BD=AD=DC时又AB=AC。

  ∴∠BAC = 90°

  ∠ABC =∠ACB=45°

  2 、(一个角是另一个角的3倍) BD=AD ,DC=AC, 且AB=AC。

  ∴∠BAC = 108°

  ∠ABC=∠ACB=36°

  (2)当底角比顶角大时,经过底角顶点画直线

  3 、(一个角是另一个角的2倍),BC=BE且BE=AE,AB=AC。

  ∴∠BAC = 36°∠ABC=∠ACB=72°

  4 、(一个角是另一个角的 3倍),BC=CE且BE=AE,AB=AC。

  ∴∠BAC =

  ∠ABC=∠ACB=

  四、 小结:

  1、进一步探究把一个一般的三角形分成两个等腰三角形的条件和思路。满足其中三个条件之一的三角形才可以被分成两个等腰三角形。

  2、利用一般三角形所具有的条件解决特殊三角形的问题。

  五、作业

  试一试

  1、已知⊿ABC中∠A=120°,∠ABC=40°试用一条直线将此三角形分割成两个等腰三角形。

  2、 将一个等边三角形分割成四个等腰三角形(画出分割线,标上必要的符号)

  引入课题,是许多同仁热衷研究的内容,我认为,与其生搬硬套不如开门见山,利用学生已有的记忆,运用曾经出现过的例题3,以考核学生的记忆力和快速的反应能力,激发学生快速进入角色,兴致盎然,本题的计算也基本上复习了本课需要的几个重要定理的同时也通过此题的结论给学生一个直观的分割三角形的形象,变式引出后面的内容。

  此处主要解决怎么画的问题,也为后面解决求等腰三角形各个内角度数时解决怎么画的打下伏笔。

  本题以老师引导到为主。由共同探讨,一可以减少时间,二可以降低难度,也为后面学生的自主探讨积累经验,得出结论并掌握。

  自然转折,符合常理。由问题2将本节课盲目尝试分割等腰三角形转化为有选择的判断怎样的三角形可以分割成两个等腰三角形,在有目的的进行分割,从而过渡到第二部分教学。

  数形结合,利用图形找到三角形内角之间的关系。得出第一类三角形形状是直角三角形,有时间的话,这个结论可以放课后讨论验证它的正确性。

  有了第一种探究,第二第三种探究结论就可以让学生与老师互动合作探究,很快得出结论,学生因为有了经验,自然就有了兴趣,更为后面等腰三角形分割,积累了第二个必不可少的经验。

  最后得出的结论,可以帮助学生初步判断具备什么条件的三角形可以分割成两个等腰三角形,然后由一般到特殊,体现思路的一般规律,也顺利的引出后面的实践内容。

  小组合作,让接受能力强的学生带动学能相对薄弱的同学,共同完成,共同进步。

  一般三角形画线,得到的是角和角之间的关系,加上新的条件,就可以具体计算角的度数,因此此处的难点就比较顺当的解决了

  分割等腰三角形成两个等腰三角形,可以综合使用并验证之前得到的两个结论,加强了学生解决问题的能力,使学生更深刻的掌握知识。

  此处发现了教学参考上一个错误:BE=EC是不对的

  及时小结,使学生及时反思,互相提醒,让更多的学生最大程度记住本课的知识要点。

  这两个作业,分别有两种、四种分割结果,可以让不同层次的学生体验,发挥主观能动性。

  六、板书

  课题:怎样的三角形可以被分割成等腰三角形?

  结论一:分割原则:

  过三角形一个顶点画直线,保留最小角

  结论二:一个任意三角形具备下列三个条件之一就

  可以被分割成两个等腰三角形:

  ① 一个角是90°,

  ② 一个角是另一个角的2倍,

  ③ 一个角是另一个角的3倍,

  七、反思补充

  新的课程标准要求教师根据自己的学生合理选择教学素材、安排教学内容,作为老师,既要尊重教材,又要挖掘教材,加入了本课一般三角形满足什么条件可以被分割成等腰三角形的一般规律,以找出一些课本之外的共性的东西,提高学生的好奇心和学习的积极性。

  在学习合作的教、学过程中,我注重及时的肯定学生的点点创新和智慧的火花,例如“探索交流,获得新知”中,当一个三角形是等腰三角形确定之后,另一个三角形是等腰三角形,边与边之间的相等有三种情况,只要有学生提出,就大力赞赏以此作为激励学生,注重学习过程的评价,让学生在学习中感悟、体验数学课堂的神奇。

  本人愚见,若有不当之处欢迎各位专家评委批评指正,谢谢!

《等腰三角形》获奖说课稿3

  一、教材分析

  本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直*分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  二、教学目的

  (一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。

  (二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。

  (三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

  三、教学重、难点

  (一)重点:等腰三角形的性质的探究及应用

  (二)难点:等腰三角形“三线合一”性质的运用

  四、教学方法

  (一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  (二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  五、教学过程

  (一)创设情景,引入新知

  我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形——等腰三角形。

  等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  (二)实验探索,大胆猜想

  教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  (三)证明猜想,形成定理

  让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  1、性质定理1:

  等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  2、性质定理2:

  等腰三角形的顶角*分线、底边上的中线和高线互相重合

  (1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  (2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()

  (3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  (四)应用举例,强化训练

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  (五)归纳小结,布置作业

  1、归纳:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  2、作业布置:

  (1)必做题:

  书本课后作业

  (2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?


《等腰三角形》获奖说课稿 (菁选3篇)扩展阅读


《等腰三角形》获奖说课稿 (菁选3篇)(扩展1)

——等腰三角形的性质说课稿

等腰三角形的性质说课稿

  作为一名优秀的教育工作者,就不得不需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。快来参考说课稿是怎么写的吧!以下是小编为大家收集的等腰三角形的性质说课稿,欢迎阅读与收藏。

等腰三角形的性质说课稿1

  一说教材

  《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

  二说教学目标

  根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

  1掌握等腰三角形的性质

  2知道等腰三角形的性质的推理过程

  3会灵活运用等腰三角形的性质解决相关的数学问题

  三 说教学重、难点

  结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

  由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

  四 说教法和学法

  本节课我采用的教法是启发式教学法、动手操作法。

  学生的学法是:自主探究法、合作讨论法。

  五说教学过程

  本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

  1 复习导入

  通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧**意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

  2探究新知

  在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

  3理解与运用

  为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

  4强化巩固

  在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

  5小结

  设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

  本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

等腰三角形的性质说课稿2

  一、教材分析

  本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直*分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  二、教学目的

  (一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。

  (二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。

  (三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

  三、教学重、难点

  (一)重点:等腰三角形的性质的探究及应用

  (二)难点:等腰三角形“三线合一”性质的运用

  四、教学方法

  (一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  (二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  五、教学过程

  (一)创设情景,引入新知

  我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形-等腰三角形。

  等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  (二)实验探索,大胆猜想

  教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  (三)证明猜想,形成定理

  让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  1.性质定理1:

  等腰三角形的两个底角相等

  在△ ABC中,∵AB=AC( ) ∴∠B= ∠C( )

  2.性质定理2:

  等腰三角形的顶角*分线、底边上的中线和高线互相重合

  (1) ∵ AB=AC ∠1= ∠ 2 ( ) ∴BD=DC AD⊥BC ( )

  (2) ∵ AB=AC BD=DC ( ) ∴ ∠1= ∠ 2 AD⊥BC ( )

  (3) ∵ AB=AC AD⊥BC于D ( ) ∴ BD=DC ∠1= ∠ 2( )

  (四)应用举例,强化训练

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  (五)归纳小结,布置作业

  1.归纳:

  (1) 等腰三角形的性质定理。

  (2) 等边三角形的性质

  (3) 利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4) 联想方法要经常运用,对解题大有裨益。

  2.作业布置:

  (1)必做题:

  书本课后作业

  (2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?

等腰三角形的性质说课稿3

  各位**、老师们:

  大家好!

  今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

  一、教材分析

  1、教材的地位与作用:

  本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教学目标:

  知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

  过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  (根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

  3、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形性质的推理证明。

  二、教法设计:

  教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,**学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

  三、学法设计:

  在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

  四、教学过程:

  根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

  1、创设情景:

  首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

  2、动手操作,大胆猜想:

  ①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

  ③分组讨论。(看哪一组气氛最活跃,结论又对又多.)

  然后小组**发言,交流讨论结果。

  ④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

  (教师引导学生进行总结归纳得出性质1,2)

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

  (设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

  3、证明猜想,形成定理:

  你能证明等腰三角形的性质吗?

  对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

  (1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

  (2)证明角和角相等有哪些方法?(学生可能会想到*行线的性质,全等三角形的性质)

  (3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

  问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

  问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

  问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

  (1)作顶角∠BAC的*分线,

  (2)作底边BC的中线,

  (3)作底边BC的高。以作顶角*分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角*分线*分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线*分顶角且垂直于底边,等腰三角形底边上的高*分顶角且*分底边,这也就证明了性质2。

  (设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)

  (4)你能用符号语言表示性质1和性质2吗?

  (设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——

  4、性质的应用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  变式练习:

  1、在等腰中,∠A=50°,则 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,则∠B=___,∠C=___

  设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如

  例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______

  变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______

  (设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

  例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

  (例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

  例四:

  在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

  5、巩固提高

  (1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

  (2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

  (3)课本本章数学活动三“等腰三角形中相等的线段”

  设计意图:

  (1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

  (2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

  6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

  7、布置作业:

  P55练习1、2、3题

  P56习题1、4、6,(选做7,8题)

等腰三角形的性质说课稿4

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

  2、教材的教学目标:

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

  ②过程与方法目标:

  通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

  通过合作交流培养学生团结协作、乐于助人的品质。

  3、教学重点与难点:

  重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

  二、学情分析

  八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

  三、教法与**

  根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  四、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

  五、教学过程设计

  (一)创设情景、导入新课

  ①复习**:向同学们出示几张精美的建筑物图片,引入等腰三角形。

  (设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

  ②等腰三角形的相关概念:

  1定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  ③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

  (二)实验探索、得出猜想:

  ①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

  和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

  (设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

  思广益让学生用自己的语言在小组内表达自己的发现。)

  ②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角*分线

  (设计意图:以小组为单位派**发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

  (三)证明猜想、形成定理:

  1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

  (1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

  (2)怎样论证这个一命题的正确性呢?

  ①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

  ②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

  设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角*分线)的方法来解决问题。

  利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

  (3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

  (1)结合性质一的证明鼓励学生证明总结的命题

  (2)得出等腰三角形的性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (3)“三线合一”的几何表达:

  如图,在△ABC中,AB=AC,点D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

  (四)实例剖析、巩固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

  2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

  (1)求∠ADC的度数(2)求∠BAD的度数

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:(1)∵AB=AC,D是BC边上的中点(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB

  =180°-30°-90°=60°

  (设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)(五)、课堂练习、总结所得:

  1、先完成课后81页练习1、2、3、4题

  (设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)

  2、学以致用:

  (设计意图:让书生体会数学知识和实际生活的紧密联系)

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。

  3、课堂小结

  今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。A(六)作业布置、深化提高:

  1、课本P84:习题13.31、2、3;(必做题)

  2、(思维发散)选做题

  已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求证:∠ACE=∠BC

  六、板书设计

等腰三角形的性质说课稿5

  一、教材分析

  1、教材分析之地位和作用

  《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教材分析之教学目标

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

  ②过程与方法目标:

  通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

  ③情感与态度目标:

  通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在**思考的同时能够认同他人。

  3、教材分析之教学重难点

  重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

  (这两个性质对于*面几何中的计算,以及今后的证明尤为重要,故确定为重点)

  难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

  (由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

  4、教材分析之教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  5、教材分析之学法

  最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

  二、教学过程:

  1、创设情景

  ①复习**:向同学们出示几张精美的建筑物图片;

  问题:轴对称图形的概念?这些图片中有轴对称图形吗?

  ②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

  问题:等腰三角形是轴对称图形吗?

  ③相关概念:定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

  2、探究问题

  ①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

  ②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线

  (5)∠BAD=∠CAD,AD为顶角*分线

  3、重要性质

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  如图,在△ABC中,AB=AC,点D在BC上

  (1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  (2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

  (3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  (为了方便记忆可以说成“知一求二!”)

  三、例题部分:

  例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

  2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

  此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

  例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

  此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

  例三:在等腰△ABC中,∠A=40°,则∠B=______

  此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

  例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:在△ABC中,

  ∵AB=AC,∠B=40°,∴∠B=∠C=40°

  又∵∠A+∠B+∠C=180°,∴∠A=100°

  在△ABC中,AB=AC,点D是BC的中点,

  ∴AD是底边上的中线根据等腰三角形“三线合一”知:

  AD是∠BAC的*分线,即∠BAD=∠CAD=50°

  四、练习部分:

  练功房Ⅰ(基础知识)填空题

  1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

  2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

  3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

  4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

  ∠ACD=43°,则∠BCD=____________

  开展小组竞赛,比一比那个小组算的又快又准!

  练功房Ⅱ(实践运用)实践题

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

  ②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  练功房Ⅲ(思维发散)选做题

  已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

  五.小结部分

  **:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

  1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

  2、等腰三角形的两底角相等。(简写成“等边对等角”)

  3、等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

  检验,看看这样的三条边是否可以构成三角形。

  5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

  6、重视需要自己画图解题时一定要“三思而后行”!

  六.作业部分

  1、教科书P86习题9.31,2,3,4题

  2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

  为什么?

  3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

  形呢?带着问题预习教科书P83—84。

  七、板书设计

  八、教学说明

  本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是**者、参与者、合作者,教师的责任是为学生创造一种宽松、**、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

  1、知识结构安排:

  本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

  2、教学反馈与评价:

  本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

  3、对于本节的几点思考

  ①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

  以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

  能充分地发挥学生主观能动性。

  ②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  ③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

等腰三角形的性质说课稿6

各位**、老师:

  大家好!

  我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

  一、说教材分析

  1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

  2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力

  3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点

  4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多**教学。

  二、说教学方法:

  “教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  三、说学生学法。

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  四、说教学程序

  1、等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  性质定理1:等腰三角形的两个底角相等

  在△ ABC中,∵AB=AC()∴∠B= ∠C()

  性质定理:等腰三角形的顶角*分线、底边上的中线和高线互相重合

  ① ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()

  ② ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()

  ③ ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()

  4、对新知识的感知性应用

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  课堂练习:

  p。227练习1,练习2(指出这是等边三角形的性质定理)。

  5、小结:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  五、布置作业:

  见作业本

  六、对于本节的几点思考

  1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。练习2其目的有二:(一)使学生在复习本节知识。(二)为下一节内容铺垫。

  2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

  9.12等腰三角形的性质定理

  板书设计

  课题:

  等腰三角形的性质定理

  例1、书写格式

  例2、书写过程

  性质定理1

  性质定理2

  学生板演

等腰三角形的性质说课稿7

  一、设计理念

  《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,在本节课的教学设计中,将始终体现以下教育教学理念:

  1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。

  2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。

  3、教师是学习活动的**者、引导者,教师应**和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。

  二、教材分析

  1、教学内容:

  本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

  2、在教材中的地位与作用:

  本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

  3、教学目标:

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

  2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  4、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形的性质的验证。

  5、教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

  三、学情分析

  八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的**思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

  四、教法设想

  ——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

  《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

  在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

  采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  五、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

  六、教学过程设计

  (一)回顾与思考(2′)

  1、课件出示人字型屋顶的图象,**:(1)、屋顶设计成了哪种几何图形?(2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

  2、学生思考回答后,教师再**引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备。)

  (二)观察与表达(4′)

  剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

  想一想:1、剪纸过程中得到的⊿ABC有什么特点?

  学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

  再让学生找一找生活中的等腰三角形。

  2、除了剪纸的方法外,你还可以其他的方法作(画)出等腰三角形吗?

  学生思考、讨论、交流,教师在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

  (三)了解与探究(14′)

  1、**:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

  学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

  2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

  ①∠B=∠C →两个底角相等

  ②BD=CD →AD为底边BC上的中线

  ③∠BAD=∠CAD →AD为顶角∠BAC的*分线

  ④∠ADB=∠ADC=90°→AD为底边BC上的高

  教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

  性质1等腰三角形的两个底角相等(简写成“等边对等角”);

  性质2等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

  (通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

  3、用全等三角形的知识验证等腰三角形的性质

  (1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

  教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

  ①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

  ②添加辅助线的方法有很多种,常见的有作顶角∠BAC的*分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

  (2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合)吗?

  让学生模仿证明性质2,并鼓励学生用多种方法证明。

  (等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

  (四)应用与提高(10′)

  1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

  (本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

  ⑴∵AB=AC,AD⊥BC

  ∴∠_=∠_,_=_;

  ⑵∵AB=AC,BD=DC

  ∴∠_=∠_,_⊥_;

  ⑶∵AB=AC,AD*分∠BAC

  ∴_⊥_,_=_

  (让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

  3、课件出示:如图(二),在⊿ABC中,AB=AC,点D在AC上,

  且BD=AD,

  ⑴图*有几个等腰三角形?分别写出它们的顶角与底角;

  ⑵你能求出各角的度数吗?

  师生共同分析:⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

  (改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

  等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

  (五)拓展与延伸(5′)

  ⑴等腰三角形底边中点到两腰的距离相等吗?

  教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

  ⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

  教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的*分线等。

  (通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

  (六)心得与体会(4′)

  这节课我们主要研究了什么内容?你有哪些收获?

  请用“通过今天这堂课的研究,我明白了(),我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

  (让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习、总结、学习、反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

  (七)练习与作业(1′)

  1、略(详见课件);

  2、教科书习题14.3第1、4、6题;

  3、教科书第143页练习题1、2、3。

  (让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

  设计思想:

  现代数学教学观念要求学生从“学会”向“会学”转变。所以本节课在教学方法的设计上,把重点放在了逐步展示知识的`形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。在教学设计中还突出了三个注重:1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;2、注重师生间、学生间的互动协作,共同提高;3、注重知能**,让学生在获取知识的同时,掌握方法,灵活运用。

等腰三角形的性质说课稿8

  一、教材分析

  1.教材的地位与作用:

  等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

  2.教学目标:

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  3.教学重点与难点

  重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直*分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

  难点:等腰三角形三线合一的推理应用

  二、教法与学法

  教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

  学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

  三、教学过程:

  (一)出示教学目标

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。

  (二)直观演示,大胆猜想

  观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

  由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

  (二)证明猜想,形成定理。

  1△ABC中,AB=AC,求证:∠B=∠C

  思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的*分线〕

  2有其它的方法吗?试试看,用不同的方法证明这个结论。

  让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

  2交流反馈,共同完成本节重要知识点的证明。

  通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水*。

  3小结:根据等腰三角形的性质填空。

  (1)如果AB=ACAD是角的*分线那么......

  (2)如果AB=ACAD⊥BC那么......

  (3)如果AB=ACBD=CD那么......

  总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

  (三)应用举例,强化训练

  为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

  通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

  四、归纳小结

  为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

  等腰三角形的性质教学反思

  安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

  在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角*分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

  性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角*分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角*分线*分底边、垂直于底边,2等腰三角形的底边上的中线*分顶角、垂直于底边,3等腰三角形的底边上的高*分顶角、*分底边”,六句话是“1等腰三角形的顶角*分线*分底边,2等腰三角形的顶角*分线垂直于底边,3等腰三角形的底边上的中线*分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高*分顶角,6等腰三角形的底边上的高*分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

  性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学**惯。

  本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。

等腰三角形的性质说课稿9

  一、说教材

  本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

  二、说教学目标

  知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

  三、教学重点与难点

  重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的**者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

  教学过程教学活动设计意图

  一、回顾与思考电脑展示人字型屋顶的图像,**:

  1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

  二、观察与表达1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多**课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

  定理2:等腰三角形的顶角*分线、底边上的中线和高线互相重合。

  通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

  学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

  三、了解与探究3、探索定理一、(A组口答,B组**解答)A组:1、等腰直角三角形的两个锐角各等于几度?2、若等腰三角形顶角为40度,则它的顶角为几度?3、若等腰三角形底角为40度,则它的底角为几度?B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?2、若等腰三角形一个内角为120度,则它的其余各角为几度?3、一个内角为60度,则它的其余各角为几度?(A组口答,B组**解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

  二、根据性质2填空:

  (1)∵AB=AC,AD⊥BC,∴,。

  (2)∵AB=AC,BD=CD,∴,。 A

  B D C (3)∵AB=AC,∠1=∠2,∴,。为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。四、应用与提高应用举例:如图,某房屋的顶角

  ∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B, ∠C, ∠CAD的度数。

  例1:求证等腰三角形两底角*分线相等A

  E D

  B C

  由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:a:由AB=AC联想到什么

  b:BD、CE是△ABC的角*分线联想到什么

  c:由a、b联想到什么

  d:由a、b、c联想到什么

  e:由d联想到什么

  从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

  “证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

  分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

  本题是通过三角形全等来证明两条角*分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,**学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△ A

  O

  B D C O’ ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

  求证:BD=CD,AD⊥BC

  思考:(1)本题的结论有何特

  殊之处?——证明两个结论

  (2)你准备如何得出这两个结论?——分别认证或同时证明

  (3)哪一种简捷?利用什

  么性质?

  在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

  变式拓展:

  (1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

  (2)若点O在BC上呢?

  经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

  在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水*的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

  通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价


《等腰三角形》获奖说课稿 (菁选3篇)(扩展2)

——等腰三角形的性质说课稿菁选

等腰三角形的性质说课稿

  作为一无名无私奉献的教育工作者,通常需要准备好一份说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么问题来了,说课稿应该怎么写?以下是小编收集整理的等腰三角形的性质说课稿,欢迎大家分享。

等腰三角形的性质说课稿1

  一、教材分析

  1、教材的地位与作用:

  本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的`作用。

  2、教学目标:

  知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

  过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  (根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

  3、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形性质的推理证明。

  二、教法设计:

  教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,**学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

  三、学法设计:

  在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

  四、教学过程:

  根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程

  创设情景:

  首先向同学们出示精美的建筑物图片,并提出问题串:

  (1)什么是轴对称图形?这些图片中有轴对称图形吗?

  (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:

  (3)a、等腰三角形是轴对称图形吗?

  b、等腰三角形具备哪些性质呢?引出本节课的课题—我们这节课来探究等腰三角形的性质。

  ①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

  ③分组讨论。(看哪一组气氛最活跃,结论又对又多。)

  然后小组**发言,交流讨论结果。

  ④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

  (教师引导学生进行总结归纳得出性质1,2)

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

  (设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

等腰三角形的性质说课稿2

  一、说教材

  本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

  二、说教学目标

  知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

  三、教学重点与难点

  重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的**者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

  教学过程教学活动设计意图

  一、回顾与思考电脑展示人字型屋顶的图像,**:

  1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

  二、观察与表达1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多**课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

  定理2:等腰三角形的顶角*分线、底边上的中线和高线互相重合。

  通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

  学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

  三、了解与探究3、探索定理一、(A组口答,B组**解答)A组:1、等腰直角三角形的两个锐角各等于几度?2、若等腰三角形顶角为40度,则它的顶角为几度?3、若等腰三角形底角为40度,则它的底角为几度?B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?2、若等腰三角形一个内角为120度,则它的其余各角为几度?3、一个内角为60度,则它的其余各角为几度?(A组口答,B组**解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

  二、根据性质2填空:

  (1)∵AB=AC,AD⊥BC,∴,。

  (2)∵AB=AC,BD=CD,∴,。 A

  B D C (3)∵AB=AC,∠1=∠2,∴,。为了对定理进行进一步探索,设计了以下练习:练习一的'整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。四、应用与提高应用举例:如图,某房屋的顶角

  ∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B, ∠C, ∠CAD的度数。

  例1:求证等腰三角形两底角*分线相等A

  E D

  B C

  由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:a:由AB=AC联想到什么

  b:BD、CE是△ABC的角*分线联想到什么

  c:由a、b联想到什么

  d:由a、b、c联想到什么

  e:由d联想到什么

  从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

  “证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

  分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

  本题是通过三角形全等来证明两条角*分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,**学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△ A

  O

  B D C O’ ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

  求证:BD=CD,AD⊥BC

  思考:(1)本题的结论有何特

  殊之处?——证明两个结论

  (2)你准备如何得出这两个结论?——分别认证或同时证明

  (3)哪一种简捷?利用什

  么性质?

  在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

  变式拓展:

  (1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

  (2)若点O在BC上呢?

  经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

  在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水*的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

  通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价

等腰三角形的性质说课稿3

  一说教材

  《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

  二说教学目标

  根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

  1掌握等腰三角形的性质

  2知道等腰三角形的性质的`推理过程

  3会灵活运用等腰三角形的性质解决相关的数学问题

  三 说教学重、难点

  结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

  由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

  四 说教法和学法

  本节课我采用的教法是启发式教学法、动手操作法。

  学生的学法是:自主探究法、合作讨论法。

  五说教学过程

  本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

  1 复习导入

  通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧**意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

  2探究新知

  在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

  3理解与运用

  为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

  4强化巩固

  在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

  5小结

  设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

  本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

等腰三角形的性质说课稿4

  一、设计理念

  《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,在本节课的教学设计中,将始终体现以下教育教学理念:

  1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。

  2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。

  3、教师是学习活动的**者、引导者,教师应**和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。

  二、教材分析

  1、教学内容:

  本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

  2、在教材中的地位与作用:

  本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

  3、教学目标:

  知识技能:

  1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:

  1、观察等腰三角形的对称性,发展形象思维。

  2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:

  1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

  2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  4、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形的性质的验证。

  5、教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

  三、学情分析

  八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的**思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

  四、教法设想

  ——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

  《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

  在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

  采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  五、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

  六、教学过程设计

  (一)回顾与思考(2′)

  1、课件出示人字型屋顶的图象,**:

  (1)、屋顶设计成了哪种几何图形?

  (2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

  2、学生思考回答后,教师再**引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备。)

  (二)观察与表达(4′)

  剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

  想一想:1、剪纸过程中得到的⊿ABC有什么特点?

  学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

  再让学生找一找生活中的等腰三角形。

  2、除了剪纸的方法外,你还可以其他的方法作(画)出等腰三角形吗?

  学生思考、讨论、交流,教师在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

  (三)了解与探究(14′)

  1、**:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

  学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

  2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

  ①∠B=∠C→两个底角相等

  ②BD=CD→AD为底边BC上的中线

  ③∠BAD=∠CAD→AD为顶角∠BAC的*分线

  ④∠ADB=∠ADC=90°→AD为底边BC上的高

  教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

  性质1等腰三角形的两个底角相等(简写成“等边对等角”);

  性质2等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

  (通过教师的`引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

  3、用全等三角形的知识验证等腰三角形的性质

  (1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

  教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

  ①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

  ②添加辅助线的方法有很多种,常见的有作顶角∠BAC的*分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

  (2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合)吗?

  让学生模仿证明性质2,并鼓励学生用多种方法证明。

  (等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

  (四)应用与提高(10′)

  1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

  (本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

  ⑴∵AB=AC,AD⊥BC

  ∴∠_=∠_,_=_;

  ⑵∵AB=AC,BD=DC

  ∴∠_=∠_,_⊥_;

  ⑶∵AB=AC,AD*分∠BAC

  ∴_⊥_,_=_

  (让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

  3、课件出示:如图(二),在⊿ABC中,AB=AC,点D在AC上,

  且BD=AD,

  ⑴图**有几个等腰三角形?分别写出它们的顶角与底角;

  ⑵你能求出各角的度数吗?

  师生共同分析:

  ⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。

  ⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

  (改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

  等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

  (五)拓展与延伸(5′)

  ⑴等腰三角形底边中点到两腰的距离相等吗?

  教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

  ⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

  教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的*分线等。

  (通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

  (六)心得与体会(4′)

  这节课我们主要研究了什么内容?你有哪些收获?

  请用“通过今天这堂课的研究,我明白了(),我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

  (让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习、总结、学习、反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

  (七)练习与作业(1′)

  1、略(详见课件);

  2、教科书习题14.3第1、4、6题;

  3、教科书第143页练习题1、2、3。

  (让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

  设计思想:

  现代数学教学观念要求学生从“学会”向“会学”转变。所以本节课在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。

  在教学设计中还突出了三个注重:

  1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;

  2、注重师生间、学生间的互动协作,共同提高;

  3、注重知能**,让学生在获取知识的同时,掌握方法,灵活运用。

等腰三角形的性质说课稿5

  一、教材分析

  1.教材的地位与作用:

  等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

  2.教学目标:

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  3.教学重点与难点

  重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直*分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

  难点:等腰三角形三线合一的推理应用

  二、教法与学法

  教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

  学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

  三、教学过程:

  (一)出示教学目标

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。

  (二)直观演示,大胆猜想

  观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

  由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

  (二)证明猜想,形成定理。

  1△ABC中,AB=AC,求证:∠B=∠C

  思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的*分线〕

  2有其它的方法吗?试试看,用不同的方法证明这个结论。

  让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

  2交流反馈,共同完成本节重要知识点的证明。

  通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水*。

  3小结:根据等腰三角形的性质填空。

  (1)如果AB=ACAD是角的*分线那么......

  (2)如果AB=ACAD⊥BC那么......

  (3)如果AB=ACBD=CD那么......

  总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

  (三)应用举例,强化训练

  为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

  通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

  四、归纳小结

  为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

  等腰三角形的性质教学反思

  安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

  在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角*分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

  性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角*分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角*分线*分底边、垂直于底边,2等腰三角形的底边上的`中线*分顶角、垂直于底边,3等腰三角形的底边上的高*分顶角、*分底边”,六句话是“1等腰三角形的顶角*分线*分底边,2等腰三角形的顶角*分线垂直于底边,3等腰三角形的底边上的中线*分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高*分顶角,6等腰三角形的底边上的高*分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

  性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学**惯。

  本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。

等腰三角形的性质说课稿6

  一、教材分析

  本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直*分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  二、教学目的

  (一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。

  (二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的`性质解决有关问题,提高分析问题、解决问题能力。

  (三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

  三、教学重、难点

  (一)重点:等腰三角形的性质的探究及应用

  (二)难点:等腰三角形“三线合一”性质的运用

  四、教学方法

  (一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  (二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  五、教学过程

  (一)创设情景,引入新知

  我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形——等腰三角形。

  等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  (二)实验探索,大胆猜想

  教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  (三)证明猜想,形成定理

  让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  1、性质定理1:

  等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  2、性质定理2:

  等腰三角形的顶角*分线、底边上的中线和高线互相重合

  (1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  (2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()

  (3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  (四)应用举例,强化训练

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  (五)归纳小结,布置作业

  1、归纳:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  2、作业布置:

  (1)必做题:

  书本课后作业

  (2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?

等腰三角形的性质说课稿7

各位**、老师:

  大家好!

  我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

  一、说教材分析

  1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

  2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力

  3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点

  4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多**教学。

  二、说教学方法:

  “教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  三、说学生学法。

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  四、说教学程序

  1、等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  性质定理1:等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  性质定理:等腰三角形的顶角*分线、底边上的中线和高线互相重合

  ①∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  ②∵AB=ACBD=DC()∴∠1=∠2AD⊥BC()

  ③∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  4、对新知识的感知性应用

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  课堂练习:

  p227练习1,练习2(指出这是等边三角形的性质定理)。

  5、小结:

  (1)等腰三角形的性质定理。

  (2)等边三角形的`性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  五、布置作业:

  见作业本

  六、对于本节的几点思考

  1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。练习2其目的有二:

  (一)使学生在复习本节知识。

  (二)为下一节内容铺垫。

  2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

  9.12等腰三角形的性质定理

  板书设计

  课题:

  等腰三角形的性质定理

  例1、书写格式

  例2、书写过程

  性质定理1

  性质定理2

  学生板演

等腰三角形的性质说课稿8

  一、教材分析

  1、教材分析之地位和作用

  《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教材分析之教学目标

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

  ②过程与方法目标:

  通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

  ③情感与态度目标:

  通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在**思考的同时能够认同他人。

  3、教材分析之教学重难点

  重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

  (这两个性质对于*面几何中的计算,以及今后的证明尤为重要,故确定为重点)

  难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

  (由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

  4、教材分析之教法

  数学是一门培养人的.思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  5、教材分析之学法

  最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

  二、教学过程:

  1、创设情景

  ①复习**:向同学们出示几张精美的建筑物图片;

  问题:轴对称图形的概念?这些图片中有轴对称图形吗?

  ②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

  问题:等腰三角形是轴对称图形吗?

  ③相关概念:定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

  2、探究问题

  ①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

  ②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线

  (5)∠BAD=∠CAD,AD为顶角*分线

  3、重要性质

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  如图,在△ABC中,AB=AC,点D在BC上

  (1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  (2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

  (3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  (为了方便记忆可以说成“知一求二!”)

  三、例题部分:

  例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

  2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

  此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

  例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

  此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

  例三:在等腰△ABC中,∠A=40°,则∠B=______

  此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

  例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:在△ABC中,

  ∵AB=AC,∠B=40°,∴∠B=∠C=40°

  又∵∠A+∠B+∠C=180°,∴∠A=100°

  在△ABC中,AB=AC,点D是BC的中点,

  ∴AD是底边上的中线根据等腰三角形“三线合一”知:

  AD是∠BAC的*分线,即∠BAD=∠CAD=50°

  四、练习部分:

  练功房Ⅰ(基础知识)填空题

  1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

  2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

  3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

  4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

  ∠ACD=43°,则∠BCD=____________

  开展小组竞赛,比一比那个小组算的又快又准!

  练功房Ⅱ(实践运用)实践题

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

  ②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  练功房Ⅲ(思维发散)选做题

  已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

  五.小结部分

  **:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

  1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

  2、等腰三角形的两底角相等。(简写成“等边对等角”)

  3、等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

  检验,看看这样的三条边是否可以构成三角形。

  5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

  6、重视需要自己画图解题时一定要“三思而后行”!

  六.作业部分

  1、教科书P86习题9.31,2,3,4题

  2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

  为什么?

  3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

  形呢?带着问题预习教科书P83—84。

  七、板书设计

  八、教学说明

  本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是**者、参与者、合作者,教师的责任是为学生创造一种宽松、**、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

  1、知识结构安排:

  本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

  2、教学反馈与评价:

  本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

  3、对于本节的几点思考

  ①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

  以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

  能充分地发挥学生主观能动性。

  ②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  ③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

等腰三角形的性质说课稿9

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

  2、教材的教学目标:

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

  ②过程与方法目标:

  通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

  通过合作交流培养学生团结协作、乐于助人的品质。

  3、教学重点与难点:

  重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

  二、学情分析

  八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

  三、教法与**

  根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  四、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

  五、教学过程设计

  (一)创设情景、导入新课

  ①复习**:向同学们出示几张精美的建筑物图片,引入等腰三角形。

  (设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

  ②等腰三角形的相关概念:

  1定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  ③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

  (二)实验探索、得出猜想:

  ①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

  和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

  (设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

  思广益让学生用自己的语言在小组内表达自己的发现。)

  ②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角*分线

  (设计意图:以小组为单位派**发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

  (三)证明猜想、形成定理:

  1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

  (1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

  (2)怎样论证这个一命题的正确性呢?

  ①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

  ②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

  设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角*分线)的方法来解决问题。

  利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

  (3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

  (1)结合性质一的证明鼓励学生证明总结的命题

  (2)得出等腰三角形的性质2:等腰三角形的顶角的*分线,底边上的`中线,底边上的高互相重合。

  (3)“三线合一”的几何表达:

  如图,在△ABC中,AB=AC,点D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

  (四)实例剖析、巩固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

  2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

  (1)求∠ADC的度数(2)求∠BAD的度数

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:(1)∵AB=AC,D是BC边上的中点(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB

  =180°-30°-90°=60°

  (设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)(五)、课堂练习、总结所得:

  1、先完成课后81页练习1、2、3、4题

  (设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)

  2、学以致用:

  (设计意图:让书生体会数学知识和实际生活的紧密联系)

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。

  3、课堂小结

  今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。A(六)作业布置、深化提高:

  1、课本P84:习题13.31、2、3;(必做题)

  2、(思维发散)选做题

  已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求证:∠ACE=∠BC

  六、板书设计


《等腰三角形》获奖说课稿 (菁选3篇)(扩展3)

——等腰三角形的性质说课稿菁选

等腰三角形的性质说课稿

  作为一位不辞辛劳的人民教师,时常需要编写说课稿,通过说课稿可以很好地改正讲课缺点。那么写说课稿需要注意哪些问题呢?以下是小编帮大家整理的等腰三角形的性质说课稿,希望对大家有所帮助。

等腰三角形的性质说课稿1

各位**、老师:

  大家好!

  我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

  一、说教材分析

  1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

  2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力

  3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点

  4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多**教学。

  二、说教学方法:

  “教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  三、说学生学法。

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  四、说教学程序

  1、等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  性质定理1:等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  性质定理:等腰三角形的顶角*分线、底边上的中线和高线互相重合

  ①∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  ②∵AB=ACBD=DC()∴∠1=∠2AD⊥BC()

  ③∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  4、对新知识的感知性应用

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  课堂练习:

  p227练习1,练习2(指出这是等边三角形的性质定理)。

  5、小结:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  五、布置作业:

  见作业本

  六、对于本节的几点思考

  1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的.掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。练习2其目的有二:

  (一)使学生在复习本节知识。

  (二)为下一节内容铺垫。

  2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

  9.12等腰三角形的性质定理

  板书设计

  课题:

  等腰三角形的性质定理

  例1、书写格式

  例2、书写过程

  性质定理1

  性质定理2

  学生板演

等腰三角形的性质说课稿2

  一、教材分析

  1.教材的地位与作用:

  等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

  2.教学目标:

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  3.教学重点与难点

  重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直*分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

  难点:等腰三角形三线合一的推理应用

  二、教法与学法

  教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

  学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

  三、教学过程:

  (一)出示教学目标

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  让学生明白本节课的重要知识点和自己需要掌握的`主要知识,做到有的放矢。

  (二)直观演示,大胆猜想

  观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

  由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

  (二)证明猜想,形成定理。

  1△ABC中,AB=AC,求证:∠B=∠C

  思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的*分线〕

  2有其它的方法吗?试试看,用不同的方法证明这个结论。

  让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

  2交流反馈,共同完成本节重要知识点的证明。

  通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水*。

  3小结:根据等腰三角形的性质填空。

  (1)如果AB=ACAD是角的*分线那么......

  (2)如果AB=ACAD⊥BC那么......

  (3)如果AB=ACBD=CD那么......

  总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

  (三)应用举例,强化训练

  为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

  通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

  四、归纳小结

  为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

  等腰三角形的性质教学反思

  安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

  在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角*分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

  性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角*分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角*分线*分底边、垂直于底边,2等腰三角形的底边上的中线*分顶角、垂直于底边,3等腰三角形的底边上的高*分顶角、*分底边”,六句话是“1等腰三角形的顶角*分线*分底边,2等腰三角形的顶角*分线垂直于底边,3等腰三角形的底边上的中线*分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高*分顶角,6等腰三角形的底边上的高*分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

  性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学**惯。

  本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。

等腰三角形的性质说课稿3

  一、教材分析

  本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直*分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  二、教学目的

  (一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。

  (二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。

  (三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

  三、教学重、难点

  (一)重点:等腰三角形的性质的探究及应用

  (二)难点:等腰三角形“三线合一”性质的运用

  四、教学方法

  (一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  (二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的.目的,发掘学生的创新精神。

  五、教学过程

  (一)创设情景,引入新知

  我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形——等腰三角形。

  等腰三角形的有关概念,轴对称图形的有关概念。

  **:等腰三角形是不是轴对称图形?什么是它的对称轴?

  (二)实验探索,大胆猜想

  教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  (三)证明猜想,形成定理

  让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  1、性质定理1:

  等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  2、性质定理2:

  等腰三角形的顶角*分线、底边上的中线和高线互相重合

  (1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  (2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()

  (3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  (四)应用举例,强化训练

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  (五)归纳小结,布置作业

  1、归纳:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  2、作业布置:

  (1)必做题:

  书本课后作业

  (2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?

等腰三角形的性质说课稿4

  一、教材分析

  1、教材的地位与作用:

  本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教学目标:

  知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

  过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  (根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

  3、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形性质的推理证明。

  二、教法设计:

  教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,**学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

  三、学法设计:

  在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

  四、教学过程:

  根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程

  创设情景:

  首先向同学们出示精美的'建筑物图片,并提出问题串:

  (1)什么是轴对称图形?这些图片中有轴对称图形吗?

  (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:

  (3)a、等腰三角形是轴对称图形吗?

  b、等腰三角形具备哪些性质呢?引出本节课的课题—我们这节课来探究等腰三角形的性质。

  ①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

  ③分组讨论。(看哪一组气氛最活跃,结论又对又多。)

  然后小组**发言,交流讨论结果。

  ④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

  (教师引导学生进行总结归纳得出性质1,2)

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

  (设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

等腰三角形的性质说课稿5

  一、说教材

  本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

  二、说教学目标

  知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

  三、教学重点与难点

  重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的**者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

  教学过程教学活动设计意图

  一、回顾与思考电脑展示人字型屋顶的图像,**:

  1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

  二、观察与表达1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多**课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

  定理2:等腰三角形的顶角*分线、底边上的中线和高线互相重合。

  通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

  学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

  三、了解与探究3、探索定理一、(A组口答,B组**解答)A组:1、等腰直角三角形的两个锐角各等于几度?2、若等腰三角形顶角为40度,则它的顶角为几度?3、若等腰三角形底角为40度,则它的底角为几度?B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?2、若等腰三角形一个内角为120度,则它的其余各角为几度?3、一个内角为60度,则它的其余各角为几度?(A组口答,B组**解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

  二、根据性质2填空:

  (1)∵AB=AC,AD⊥BC,∴,。

  (2)∵AB=AC,BD=CD,∴,。 A

  B D C (3)∵AB=AC,∠1=∠2,∴,。为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。四、应用与提高应用举例:如图,某房屋的顶角

  ∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B, ∠C, ∠CAD的度数。

  例1:求证等腰三角形两底角*分线相等A

  E D

  B C

  由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:a:由AB=AC联想到什么

  b:BD、CE是△ABC的角*分线联想到什么

  c:由a、b联想到什么

  d:由a、b、c联想到什么

  e:由d联想到什么

  从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

  “证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

  分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的.学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

  本题是通过三角形全等来证明两条角*分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,**学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△ A

  O

  B D C O’ ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

  求证:BD=CD,AD⊥BC

  思考:(1)本题的结论有何特

  殊之处?——证明两个结论

  (2)你准备如何得出这两个结论?——分别认证或同时证明

  (3)哪一种简捷?利用什

  么性质?

  在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

  变式拓展:

  (1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

  (2)若点O在BC上呢?

  经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

  在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水*的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

  通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价

等腰三角形的性质说课稿6

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

  2、教材的教学目标:

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

  ②过程与方法目标:

  通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

  通过合作交流培养学生团结协作、乐于助人的品质。

  3、教学重点与难点:

  重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

  二、学情分析

  八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

  三、教法与**

  根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  四、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

  五、教学过程设计

  (一)创设情景、导入新课

  ①复习**:向同学们出示几张精美的建筑物图片,引入等腰三角形。

  (设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

  ②等腰三角形的相关概念:

  1定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  ③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

  (二)实验探索、得出猜想:

  ①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

  和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

  (设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

  思广益让学生用自己的语言在小组内表达自己的发现。)

  ②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角*分线

  (设计意图:以小组为单位派**发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

  (三)证明猜想、形成定理:

  1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

  (1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

  (2)怎样论证这个一命题的正确性呢?

  ①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

  ②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

  设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角*分线)的方法来解决问题。

  利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

  (3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

  (1)结合性质一的证明鼓励学生证明总结的命题

  (2)得出等腰三角形的性质2:等腰三角形的顶角的.*分线,底边上的中线,底边上的高互相重合。

  (3)“三线合一”的几何表达:

  如图,在△ABC中,AB=AC,点D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

  (四)实例剖析、巩固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

  2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

  (1)求∠ADC的度数(2)求∠BAD的度数

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:(1)∵AB=AC,D是BC边上的中点(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB

  =180°-30°-90°=60°

  (设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)(五)、课堂练习、总结所得:

  1、先完成课后81页练习1、2、3、4题

  (设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)

  2、学以致用:

  (设计意图:让书生体会数学知识和实际生活的紧密联系)

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。

  3、课堂小结

  今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。A(六)作业布置、深化提高:

  1、课本P84:习题13.31、2、3;(必做题)

  2、(思维发散)选做题

  已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求证:∠ACE=∠BC

  六、板书设计

等腰三角形的性质说课稿7

  一说教材

  《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

  二说教学目标

  根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

  1掌握等腰三角形的性质

  2知道等腰三角形的性质的推理过程

  3会灵活运用等腰三角形的性质解决相关的数学问题

  三 说教学重、难点

  结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的.重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

  由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

  四 说教法和学法

  本节课我采用的教法是启发式教学法、动手操作法。

  学生的学法是:自主探究法、合作讨论法。

  五说教学过程

  本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

  1 复习导入

  通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧**意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

  2探究新知

  在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

  3理解与运用

  为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

  4强化巩固

  在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

  5小结

  设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

  本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

等腰三角形的性质说课稿8

  一、设计理念

  《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,在本节课的教学设计中,将始终体现以下教育教学理念:

  1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。

  2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。

  3、教师是学习活动的**者、引导者,教师应**和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。

  二、教材分析

  1、教学内容:

  本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

  2、在教材中的地位与作用:

  本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

  3、教学目标:

  知识技能:

  1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:

  1、观察等腰三角形的对称性,发展形象思维。

  2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:

  1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

  2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  4、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形的性质的验证。

  5、教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

  三、学情分析

  八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的**思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

  四、教法设想

  ——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

  《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

  在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

  采用多**辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  五、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

  六、教学过程设计

  (一)回顾与思考(2′)

  1、课件出示人字型屋顶的图象,**:

  (1)、屋顶设计成了哪种几何图形?

  (2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

  2、学生思考回答后,教师再**引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的.物质准备和精神准备。)

  (二)观察与表达(4′)

  剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

  想一想:1、剪纸过程中得到的⊿ABC有什么特点?

  学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

  再让学生找一找生活中的等腰三角形。

  2、除了剪纸的方法外,你还可以其他的方法作(画)出等腰三角形吗?

  学生思考、讨论、交流,教师在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

  (三)了解与探究(14′)

  1、**:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

  学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

  2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

  ①∠B=∠C→两个底角相等

  ②BD=CD→AD为底边BC上的中线

  ③∠BAD=∠CAD→AD为顶角∠BAC的*分线

  ④∠ADB=∠ADC=90°→AD为底边BC上的高

  教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

  性质1等腰三角形的两个底角相等(简写成“等边对等角”);

  性质2等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

  (通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

  3、用全等三角形的知识验证等腰三角形的性质

  (1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

  教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

  ①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

  ②添加辅助线的方法有很多种,常见的有作顶角∠BAC的*分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

  (2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合)吗?

  让学生模仿证明性质2,并鼓励学生用多种方法证明。

  (等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

  (四)应用与提高(10′)

  1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

  (本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

  ⑴∵AB=AC,AD⊥BC

  ∴∠_=∠_,_=_;

  ⑵∵AB=AC,BD=DC

  ∴∠_=∠_,_⊥_;

  ⑶∵AB=AC,AD*分∠BAC

  ∴_⊥_,_=_

  (让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

  3、课件出示:如图(二),在⊿ABC中,AB=AC,点D在AC上,

  且BD=AD,

  ⑴图**有几个等腰三角形?分别写出它们的顶角与底角;

  ⑵你能求出各角的度数吗?

  师生共同分析:

  ⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。

  ⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

  (改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

  等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

  (五)拓展与延伸(5′)

  ⑴等腰三角形底边中点到两腰的距离相等吗?

  教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

  ⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

  教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的*分线等。

  (通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

  (六)心得与体会(4′)

  这节课我们主要研究了什么内容?你有哪些收获?

  请用“通过今天这堂课的研究,我明白了(),我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

  (让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习、总结、学习、反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

  (七)练习与作业(1′)

  1、略(详见课件);

  2、教科书习题14.3第1、4、6题;

  3、教科书第143页练习题1、2、3。

  (让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

  设计思想:

  现代数学教学观念要求学生从“学会”向“会学”转变。所以本节课在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。

  在教学设计中还突出了三个注重:

  1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;

  2、注重师生间、学生间的互动协作,共同提高;

  3、注重知能**,让学生在获取知识的同时,掌握方法,灵活运用。

等腰三角形的性质说课稿9

  一、教材分析

  1、教材分析之地位和作用

  《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教材分析之教学目标

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

  ②过程与方法目标:

  通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

  ③情感与态度目标:

  通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在**思考的同时能够认同他人。

  3、教材分析之教学重难点

  重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

  (这两个性质对于*面几何中的计算,以及今后的证明尤为重要,故确定为重点)

  难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

  (由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

  4、教材分析之教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  5、教材分析之学法

  最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

  二、教学过程:

  1、创设情景

  ①复习**:向同学们出示几张精美的建筑物图片;

  问题:轴对称图形的概念?这些图片中有轴对称图形吗?

  ②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

  问题:等腰三角形是轴对称图形吗?

  ③相关概念:定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

  2、探究问题

  ①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

  ②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线

  (5)∠BAD=∠CAD,AD为顶角*分线

  3、重要性质

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  如图,在△ABC中,AB=AC,点D在BC上

  (1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  (2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

  (3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  (为了方便记忆可以说成“知一求二!”)

  三、例题部分:

  例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

  2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

  此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

  例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

  此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

  例三:在等腰△ABC中,∠A=40°,则∠B=______

  此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

  例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的.综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:在△ABC中,

  ∵AB=AC,∠B=40°,∴∠B=∠C=40°

  又∵∠A+∠B+∠C=180°,∴∠A=100°

  在△ABC中,AB=AC,点D是BC的中点,

  ∴AD是底边上的中线根据等腰三角形“三线合一”知:

  AD是∠BAC的*分线,即∠BAD=∠CAD=50°

  四、练习部分:

  练功房Ⅰ(基础知识)填空题

  1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

  2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

  3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

  4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

  ∠ACD=43°,则∠BCD=____________

  开展小组竞赛,比一比那个小组算的又快又准!

  练功房Ⅱ(实践运用)实践题

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

  ②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  练功房Ⅲ(思维发散)选做题

  已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

  五.小结部分

  **:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

  1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

  2、等腰三角形的两底角相等。(简写成“等边对等角”)

  3、等腰三角形的顶角的*分线,底边上的中线,底边上的高互相重合。

  (简称“三线合一”)

  4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

  检验,看看这样的三条边是否可以构成三角形。

  5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

  6、重视需要自己画图解题时一定要“三思而后行”!

  六.作业部分

  1、教科书P86习题9.31,2,3,4题

  2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

  为什么?

  3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

  形呢?带着问题预习教科书P83—84。

  七、板书设计

  八、教学说明

  本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是**者、参与者、合作者,教师的责任是为学生创造一种宽松、**、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

  1、知识结构安排:

  本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

  2、教学反馈与评价:

  本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

  3、对于本节的几点思考

  ①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

  以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

  能充分地发挥学生主观能动性。

  ②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

  ③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。


《等腰三角形》获奖说课稿 (菁选3篇)(扩展4)

——《三角形面积》说课稿5篇

《三角形面积》说课稿1

  一、 说教材:

  1、说课内容:

  我说课的内容是人教版数学五年级上册第五单元《三角形的面积》。

  2、教材的地位及作用:

  三角形的面积计算是图形的面积(一)探索活动的第二课时,它是在学生掌握了长方形、正方形及*行四边形面积计算方法的基础上进行的。通过对这部分内容的教学,使学生理解并掌握三角形面积的计算方法,并解决实际生活中与三角形面积计算相关的实际问题;同时加深学生对三角形与长方形、*行四边形之间内在联系的认识,也为学生进一步探索并掌握其他*面图形的面积计算方法打下基础。

  同时,三角形的面积推导过程蕴含着转化和迁移的数学思想,本课的学习,重在让学生经历学习的过程,在获得知识的同时,渗透初步的数学思想与方法,并培养科学的探究精神,进一步提高学生运用所学知识、技能解决一些实际问题的能力。本课内容编排的最大特点是加强了动手操作,让学生在动手实践中发现各种图形的内在联系,体会三角形面积计算的一般策略。让学生经历发现问题——探索问题——解决问题的过程,培养推理能力。这样的编排使学生理解三角形面积公式的来龙去脉,锻炼数学推理能力,从而感受数学方法的内在魅力。

  3、教学目标:

  (1)知识与能力目标:让学生通过*移、旋转等方法,探索并掌握三角形的面积计算公式,能正确运用面积公式进行三角形面积计算,加深学生对三角形与*行四边形面积公式之间内在联系的认识。

  (2)过程与方法目标:使学生经历小组合作、动手操作、交流讨论、分析归纳等数学活动过程,体会转化的数学思想,发展空间观念和初步的推理能力。

  (3)情感态度与价值观目标:培养学生的团结协作意识和勇于探索的精神,使学生在学习数学的过程中,体验到成功的乐趣。

  4、 教学重难点:

  (1)重点:掌握三角形面积的计算公式,能利用公式解决生活中有关三角形面积计算的实际问题。

  (2)难点:理解三角形面积计算公式的推导过程,灌输迁移的数学方法和转化的数学思想。

  (3)关键:引导学生理解三角形面积计算公式中除以2的意义。

  5、教具、学具准备:

  教师准备课件,学生以小组为单位准备完全相同的锐角、直角、钝角三角形各两个。

  二、说教法与学法。

  本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具**作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

  三、说教学过程。

  1、旧知引入,激发思考:

  在这一环节中,我先让学生回忆了长方形、正方形、*行四边形的面积计算公式。再出示一条三角形红领巾,**你们会计算三角形的面积吗?(学生大部分会说出三角形的面积=底×高÷2),这时老师反问:为什么底×高÷2就能得到三角形的面积呢?那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

  2、回忆旧知,引导迁移:

  回忆*行四边形的面积计算公式推导过程,**:我们能不能像推导*行四边形面积公式一样,将三角形转化成我们以前学过的图形呢?(这一部分的设计在联系旧知的基础上学习新知,将*行四边形面积的推导方法迁移到三角形面积计算公式的推导,向学生灌输迁移的数学方法和转化的数学思想,为三角形面积计算公式的推导作好辅垫。)

  3、小组合作,动手操作:

  (1)以小组为单位,利用学具进行动手操作。看看三角形能转化成以前学过的什么图形?

  (2)小组汇报:学生汇报的结果可能有长方形、正方形、*行四边形或一个更大的三角形,这时,教师作引导:三角形的面积暂时还不会计算,拼成长方形或正方形也是比较特殊的情况,而两个完全相同的直角三角形、锐角三角形和钝角三角形都可以拼成一个*行四边形,从而将三角形面积的计算公式的推导引导到*行四边形上来。(把学生拼出的图形一一摆在黑板上)

  4、学生汇报,归纳总结:首先,小组交流讨论:拼成的*行四边形的底与原来三角形的底有什么关系?拼成的*行四边形的高与原来三角形的高有什么关系?其中一个三角形的面积与拼成的*行四边形的面积有什么关系?然后每个小组派**发言,说说*行四边形与三角形的关系:拼成的*行四边形的底与原来三角形的底相等,高与原来的三角形的高相等,其中一个三角形的面积是拼成的*行四边形面积的一半。

  师生一起归纳总结推导过程,得出各种推导的结论,结论一:两个完全相同的三角形可以拼成一个*行四边形,这个*行四边形的底就是原来三角形的底,高就是原来三角形的高,因为每个三角形的面积等于拼成的*行四边形面积的一半,所以,三角形的面积=底×高÷2。结论二:在高的一半的地方剪开,上半部分旋转一下,变成一个*行四边形,*行四边形的底就是三角形的底,它的高是三角形的高的一半,*行四边形的面积就是三角形的面积,三角形的面积=*行四边形的面积=底×高的一半,所以三角形的面积S=ah÷2。

  例题的教学,是本课的重点。书上的例题,我着重让学生通过分组探究的方式去学习,在交流中把应掌握的知识有层次地一一呈现。这些知识是本节课的关键。估计到学生在操作的时候,有可能会出现只用一个三角形拼*行四边形的方法,这种方法与例题方法以及与“你知道吗?”的对比,可以从多角度来强化“÷2”的理由,我觉得花一些时间还是有必要的。而且这样的做法,也是基于学生的学习实际和对传统的数学文化了解。

  5、简单应用,突出重点:

  (1)验证结论:用公式计算法求出第一个环节中的三角形红领巾的面积。

  (2)巩固练习:数学来源于生活,并应用于生活。

  在学习了三角形面积计算公式后,我设计了一组练习,

  (1)口算(熟练三角形面积计算公式)。

  (2)判断(理解意义,突破难点)。

  (3)选择(理解三角形的面积与*行四边形面积的关系)。

  (4)应用(解决生活中的实际问题)。

  练习的设计主要分这几个环节:

  第一个环节的练习,主要是让学生能正确地应用三角形面积公式计算各个三角形的面积。在应用的过程中,规范学生的书写,培养良好的作业习惯。

  第二个环节重点是放在“÷2”和“×2”的区别上。主要是因为从以往学生练习来看,这是错误中的主流,一定要引起学生的重视。

  第三个环节是开发性的练习,数据具有更多的可能性,主要还是激发学生的探索欲望。通过这个开放练习,使学生又一次地认识到三角形与对应的*行四边形面积之间的联系。

  6、课堂总结:这节课你有什么收获?让学生说说自己在这一节课中在知识方面及小组合作过程中的收获,教师对学生进行激励性评价。

  四、说板书设计:

  三角形的面积

  三角形的面积 = *行四边形的面积÷2

  三角形的面积 = 底×高÷2

  S=ah÷2

  例1 S=ah÷2

  =100×33÷2

  =1650 (*方厘米)

《三角形面积》说课稿2

  一、说教材

  《认识三角形》是苏教版四年级下册上的内容,在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材给我们提供2个例子,例题1提供场景图让学生观察,并找出其中的三角形;再联系日常生活说说还在哪里看到三角形。通过找和说唤起学生对三角形初步认识的回忆,从整体上初步感知三角形。例题2让学生任意选三根小棒围一个三角形,在此活动基础上我增加了让学生找出第三边的长度范围,这样使学生知道三角形第三边的长度是有一定范围的,更容易发现三角形任意两边之和大于第三边。最后教材还安排"想想做做",让学生及时巩固所学的知识。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他*面图形和立体图形积累知识经验。

  二 说教学目标

  根据这一教学内容在教材中所处的地位与作用,以及新课标的要求"人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展".结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:

  知识与技能:

  1.使学生知道任意两边之和大于第三边。

  2.能判断三条线段的长度能否组成三角形。

  过程与方法:

  1.在学生探索三角形三边规律的过程中,培养学生自主探索学习的能力。

  2.在学生探索发现规律后,培养学生自主总结得出结论。

  情感、态度与价值观:

  1、鼓励学生探索发现,培养学生小问题大钻研的精神。

  2、在数学中很注重结论的严谨性,培养学生严谨的学习态度。

  三、说教学的重点和难点

  本节课的重点、难点:使学生理解任意两边之和大于第三边四、 说教法学法

  在教法上采用实验法、以及分组讨论、合作学习的形式,并运用多**课件辅助教学,让学生动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多**课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。

  在学法指导上,我将充分发挥学生的主体作用,留有足够的时间和空间激发他们主动探索。借鉴杜威"做中学"的思想,将学生分成5人学习小组,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究的课堂教学氛围,将课堂的主动权真正还给学生,让学生在自主活动中得以发展。

  四、说教学过程

  一、引入谈话

  师:孩子们,春天到来了,阳光明媚,****,如果能到郊外去玩玩儿,那该多好啊,瞧,一群孩子已经来到了公园门口?仔细看看,这幅图上有那些图中哪些物体形状是三角形的?

  师:我们生活中还有哪些物体是三角形的?

  师:既然生活中有这么多三角形。那我们就一起来研究有趣的三角形。(板书课题:认识三角形)[点评:既然生活中有这么多三角形。会很快激起学生想研究三角形的欲望,一开始就抓住了学生的心,是一个非常好的开端。]

  二、操作感知三角形的特征

  1、感知生活中的三角形并找出三角形的特征

  师:三角形是我们的朋友,它为我们日常生活、建筑业等方面作出了很大贡献。看,这些实物图和标志牌上都有三角形,(课件出示例1的图的三角形),请仔细观察,思考这些三角形有什么的共同特征。 再说说什么样的图形叫做三角形形(让学生充分观察,自己总结出特征)归纳:三角形有三条边,三个顶点,三个角。对照图形,谁能用自己的语言来说说看,什么样的图形叫做三角形呢?引导学生得出:由三条线段围成的图形叫做三角形。(板书)2、画三角形并理解三角形的特点

  师:请在练习本上画一个你喜欢的三角形,画好后,和你的同桌说说三角形各部分的名称。

  3、辨一辨并得出判断三角形的条件

  师:我们来看看这些小朋友画的三角形,画得怎样?

  师小结:判断一个图形是不是三角形首先要看是不是有三条线段,其次看这三条线段是不是围拢了。

  (2)操作:第53页课堂活动第1,2题,按要求在本子上画出三角形,并相互检查。

  (3)判断哪些图形是三角形?练习十第1题

  [点评:学生对三角形并不陌生,早在一年级认识图形时就初步认识了,只不过没有对三角形的特征进行认识,所以这一环节的重点是在观察中概括出三角形各部分的名称,以及用自己的语言描述出什么样的图形是三角形。]

  三、感知三角形的特性

  (1)师:生活中我们看到了很多物体的形状都是三角形的,如:电线杆架、房架等等。为什么要设计为三角形而不设计为其它的图形呢?还有我们来看小兔家和小狗家的篱笆,谁的更好呢?

  请大家猜一猜三角形到底有什么特性呢?我们来做个实验吧。

  (2)师:这是同样的木条,用同样的方法,做成的四边形和三角形,请两个小朋友上来拉一拉,你有什么发现?

  生:四边形轻轻一拉,形状和大小都变了,而三角形用力拉后,发现形状和大小都不变。

  (3)师小结:说明三角形比较牢固,具有较好的稳定性。

  (4)举出生活中哪些物品用到三角形的这个特性吗?

  (5)师:了解了三角形的稳定性,我想请孩子们来帮帮我。师演示可摇晃的长方形,请小朋友想一想怎样才能把这个四边形固定下来呢?

  [点评:这一环节重在让学生通过拉一拉的实践性的比较活动,去感受三角形与四边形在稳定性方面的差别,从而理解生活中很多建筑做成三角形形状的理由,不是要让学生记住三角形不容易变形这个结论。]

  四、巩固练习

  1.练习第54页第4题。

  五、课堂总结

  教师:通过这节课的学习,你对三角形有哪些新的认识?

《三角形面积》说课稿3

  《三角形》一章第一节是与三角形有关的线段,昨晚学生进行了预习,这节课是在**概念和做题中完成的。课本上三角形线段间的关系是这样说的:三角形两边之和大于第三边。而在基训上出现了已知两边求第三边范围,这样需要补充“三角形任意两边之差小于第三边”的知识。

  后面我又补充了几道关于应用的题目,加深学生对此的理解。今天因状态不佳课堂效果并不很好。今天又阅完了上章的测试题,十班的学生和九班学生有较大差距,下午杨冬和高丹又给我送来了英语的测试成绩,我看了大吃一惊,有许多比较优秀的学生成绩竟然不及格,英语老师因家中有事,可能学生的学习受到影响,但变化幅度如此之大让人难以接受。我把那十几位同学叫出教室外一一谈了谈,学生的学习不能只看表面现象。

  今天比较累,如果批评学生可能话会说重了,静下心来,气生不得。现在的主要问题还是提高课堂的效率。今天我设计了一个课堂参与程度统计表,督促学生积极参与,对学生每天上课举手发言情况做好纪录,不知效果如何,能否调动起学生上课的积极性拭目以待。

《三角形面积》说课稿4

  学习目标:

  1.能用不同的方法探索并了解三角形3个内角之间的关系;;

  2.会利用三角形的内角和定理解决问题;

  3.知道直角三角形的两个锐角互余的关系;

  4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。

  学习重点:

  三角形的内角和定理

  学习难点:

  三角形内角和定理推理和应用

  教学过程:

  一、情境创设,感悟新知

  1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”

  红不服气的说:“那可不好说噢,你自己量量看!”

  蓝用量角器量了量自己和红,就不再说话了!

  同学们,你们知道其中的道理吗?

  三角形三个内角的和等于180°

  2、你有什么方法可以验证呢?

  方法一:度量法.

  方法二:剪拼法.

  3、你还有其他说明方法吗?

  二、探索规律,揭示新知

  1、议一议:如,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.

  理由:.

  2、操作:把木条a绕点A转动,使它与木条b相交于点C.根据形,你能说明“三角形3个内角的和等于1800”的理由吗?

  3、说理:

  (补充说明:也可以转化为*角进行说明。)

  4、方法小结:在这里,为了说明的需要,在原来的形上添画的线叫做辅助线。在*面几何里,辅助线通常画成虚线。

  5、你还有其他方法说明“三角形3个内角的和等于1800”吗?

  (1)

  (2)

  6、思路总结:为了说明三个角的和为1800,转化为一个*角或同旁内角互补,这种转化思想是数学中的常用思想方法.

  三、尝试反馈,领悟新知

  例1:如,AC、BD相交于点O,∠A与∠B的和等于∠C与∠D的和吗?为什么?

  例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三个内角的度数。

  若将条件改为∠A:∠B:∠C=2:3:4,又如何解呢?

  四、拓展延伸,运用新知

  1、随堂练习

  2.结论:直角三角形的两个锐角互余.

  3、巩固练习:

  ①、△ABC中,若∠A+∠B=∠C,则△ABC是()

  A、锐角三角形 B、直角三角形

  C、钝角三角形 D、等腰三角形

  ②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?

  ③、如△ABC中,CD*分∠ACB,∠A=70度,∠B=50度,求∠BDC的度数。

  五、课堂小结,内化新知

  1本节课你有哪些收获?

  2你还有什么疑问?

  六、布置作业,巩固新知

  1、必做题:

  习题7.5第1、2、3、4题。

  2、选做题。

  如右:试求出中∠1+∠2+∠3的度数

  七、教学寄语,拓宽课堂

  老师寄语:

  If you wish to learn swimming,you have to gointo the water,and if you wish to become a problem solver,you have to solve problems.

  如果你想学会游泳,你必须下水;

  如果你想成为解题能手,你必须解题。

《三角形面积》说课稿5

  设计说明:本课的教学内容是人教版三年制初二几何5.4节三角形相似的判定。

  在充分理解教材的基础上,本节课首先在新旧知识的转折处创设有助于学生自主学习的问题情境,引导学生通过探索、交流,获得知识,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。其次,根据变式分层的思想设计具有一定跨度的问题串,**学生进行变式训练,有效地实施分层次教学,使每个学生都得到充分的发展。

  1 教学目标

  1.了解三角形相似的判定定理1的证明思路和方法, 能运用判定定理1解决有关问题;

  2.掌握直角三角形被斜边上的高分成的两个直角三角形彼此相似并且都和原三角形相似;

  3.学会与人合作,能与他人交流思维的过程和结果;形成评价与反思的意识;

  4.能积极参与数学学习活动,体验数学活动充满着探索与创造,形成实事求是的态度以及**思考的习惯。

  2 教学重点和难点

  重点是三角形相似的判定定理1及其应用, 难点是定理的证明方法。突破难点的.关键是在于使用化归、全等变换、类比等数学思想方法。

  3 教学、学法

  本课采用“自主探索,合作交流”这一教学**形式,首先从问题1入手,利用图形变换的对比手法,引导学生步步深入, 类比归纳出判定两个三角形相似的条件;然后通过一组变式题,保证学生在基础知识和基本技能的获得与一定的训练的同时,能感受到数学创造的乐趣,获得对数学较为全面的体验与理解。

  4 教学过程

  4.1 创设问题情景,引导学生探索导出新知识

  4.1.1 问题讨论 显示问题1和问题2,**学生分小组讨论。

  问题1:如图1,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

  利用电脑课件改变DE的位置,保持∠1=∠B,得到问题2。

  问题2:如图2,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

  4.1.2 小组交流与同学交流自己的想法。

  鼓励学生在**思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。

  教师积极引导学生利用化归的思想解决问题,在学生充分讨论的基础上,对问题解决的方法小结如下:

  (1)利用同位角相等,两直线*行(∠1=∠B,DE∥BC )将问题1化归到上节所学的定理;

  (2)通过全等变换,将问题2化归到问题1;

  电脑三维动画显示:将△ADE绕着∠A的*分线旋转180°(即将△ADE翻一面)可得到△AD′E′,(如图3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因为∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。

  (3)学生**口述交流问题2证明的思路,教师板书证明过程;

  (4)这里由特殊到一般来探索数学规律, 是数学研究中常用的一种思想方法。

  4、导出定理:我们知道三角形全等是三角形相似的特殊情况, 在上述学习的基础上,你能否类似于三角形全等用符合某种条件来判定两个三角形相似?

  学生口述三角形相似判定定理1,教师板书。

  (二)变式训练,引导学生应用新知识和进行创新性学习。

  1.显示习题1、习题2,供学生**思考后回答。

  习题1如图4,已知在△ABC中,AB=AC,∠A=36°,BD *分∠ABC交AC于点D,请找出图中的相似三角形。

  习题2如图5,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D, 找出图中所有的相似三角形。

  2.教师归纳小结:

  (1)习题1利用简单计算,直接运用判定定理1便可找出△ABC~△BDC;

  (2)习题2与习题1的解题方法一样,但要求全面观察图形, 图*有三对三角形相似,即直角三角形被斜边上的高分成的两个直角三角形相似。

  3.电脑显示习题3,学生**练习后,小组交流,教师归纳小结。

  习题3如图6,在△ABC中,点D为AC边上的一点,连结BD, 问∠ADB满足什么条件时,△ADB~△ABC。

  4.电脑显示将图6中的△ADB绕点A旋转一定的角度,得到习题4。

  习题4 如图7,已知∠D′=∠B,∠1=∠2,求证:△AD′B′~△ABC。

  5.让学生在习题4的基础上改编一道变式题,课后交流。

  这个问题的参与性较强,每个学生都可以展开想象的翅膀,按照自己思考的设计原则,编拟题目(如改变条件:将∠D′=∠B改成∠B′=∠C,结论不变;也可以将图形不变;也可以将图形变为如图8所示),感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。

  (三)师生共同作本节果小结。

  作者介绍:郑碧星,福建德化第一中学


《等腰三角形》获奖说课稿 (菁选3篇)(扩展5)

——《三角形》说课稿3篇

《三角形》说课稿1

  本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。

  一、教材分析及教学目标

  本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。

  二、教学准备工作

  课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。

  三、教学方法

  采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。

  四、教学时数

  1课时

  五、教具

  为增大课堂教学的容量和提高效率,采用多**辅助教学。

  六、教学过程

  (一)激情导入

  在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?

  板书课题:三角形外角和

  (二)新课讲授:

  1、探究三角形外角的两条性质

  对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。

  探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全

  2、探究三角形外角和定理。

  这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。

  本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。

  (三)小结

  回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。

  总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的'能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。

  力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。

《三角形》说课稿2

  本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。

  一、教材分析及教学目标

  本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。

  二、教学准备工作

  课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。

  三、教学方法

  采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。

  四、教学时数

  1课时

  五、教具

  为增大课堂教学的容量和提高效率,采用多**辅助教学。

  六、教学过程

  (一)激情导入

  在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?

  板书课题:三角形外角和

  (二)新课讲授:

  1、探究三角形外角的两条性质

  对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。

  探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全

  2、探究三角形外角和定理。

  这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。

  本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。

  (三)小结

  回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。

  总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。

  力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。

《三角形》说课稿3

  一、说教材

  (一)、内容:

  《三角形的特性》是人教版义务教育课程标准实验教科书80—81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的.稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从*面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。

  (二)、教学目标:

  1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。

  3、培养学生观察,操作能力和应用数学知识解决实际问题。

  (三)、教学重点:理解三角形的特性。

  (四)、教学难点:在三角形内画高。

  二、说教法

  (一)、情境教学法。

  在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。

  (二)、操作讨论法。

  在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了**者,引导者与合作者的作用。

  三、说学法。

  (一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。

  (二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。

  四、说教学程序。

  (一)、联系生活,情境导入

  1、出示80页情境图,学生观察,发现描述三角形。

  2、说一说:生活中还有哪些物体上有三角形。

  3、课件出示生活中常见的物体上的三角形。

  4、导入并板书课题。

  (二)、操作感知,理解概念

  1、发现三角形的特征

  2、概括三角形的定义

  (1)、引导学生用自己的话概括什么叫三角形?

  (2)、议一议:下面的图形是不是三角形?

  (3)、讨论:哪种说法更准确?

  (4)、指导阅读80页“三角形”定义。

  3、认识三角形的底和高

  (1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。

  (2)、你是怎么测量的?(学生交流汇报)。

  (3)、讲解测量过程?(得出:三角形高、底的概念)。

  (4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。

  4、拓展

  在三角形ABC中,以AB为底边的高是();以AC为底边的高是();以BC为底边的高是()。

  (三)、实验解疑,探索特性

  1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?

  2、实验解疑

  (1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?

  (2)、得出结论:三角形具有稳定性。

  (3)、举例说出生活中应用三角形稳定性。

  (四)、巩固运用,提高认识

  课件出示练习十四:1、2、3题

  (五)、总结评价,质疑问难

  1、本节课学习了什么内容?

  2、你对三角形有了哪些认识?


《等腰三角形》获奖说课稿 (菁选3篇)(扩展6)

——《等腰三角形性质》教案

《等腰三角形性质》教案

  作为一名辛苦耕耘的教育工作者,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。写教案需要注意哪些格式呢?下面是小编为大家收集的《等腰三角形性质》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《等腰三角形性质》教案1

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

  教学重点

  等边三角形的判定定理和直角三角形的性质定理。

  教学难点

  能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、定理:一个角等于60°的等腰三角形是等边三角形

  1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

  2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?**学生交流自己的想法。渗透分类讨论的思维方法。

  3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

  二、一种特殊直角三角形的性质

  1.让学生拼摆事先准备好的三角尺,**:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

  2.肯定学生的发现和解释,在此基础上进一步深入**:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

  3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

  4.让学生准备一张正方形纸片,,按要求动手折叠。

  5.讲解例题,应用定理。

  6.布置学生做练习。

  练习:课本随堂练习1

  三、课堂小结:

  通过这节课的学习你学到了什么知识?了解了什么证明方法?

  四、作业:同步练习

  板书设计:

  1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

  2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

  3.认真听讲,体会分类讨论的数学思维方法,理解定理。

  1.积极动手操作,并很快得到结果:可以拼出等边三角形。

  2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

  3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

  4.很有兴趣地折叠纸片,体会定理的应用。

  5.听讲,体会定理的应用。

  6.认真做练习。

  (学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

《等腰三角形性质》教案2

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的含义。

  教学重点

  等腰三角形的关性质定理和判定定理。

  教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、等腰三角形性质的探究

  1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

  2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

  3.分别演示:

  ∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

  4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

  5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

  6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

  7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

  8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

  9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

  10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

  11.小结这两个课时的内容。

  作业:

  同步练习

  板书设计:

  1.积极思考,回忆以前所学知识,联想新问题。

  2.认真观看例1图形中线段的关系,积极思考,认真听讲。

  3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

  4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

  5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

  6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

  7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

  8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

  9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

  10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

  11.体会老师的讲解,并根据小结记忆掌握知识。

  (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的*分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

《等腰三角形性质》教案3

  一、教材分析

  1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。 2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

  3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

  知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。ツ芰δ勘辏耗芙岷暇咛迩榫撤⑾植⑻岢鑫侍猓逐步具有观察、猜想、推理、归纳和合作学习能力。

  情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

  4、教学重、难点:

  重点:等腰三角形性质的探索及其应用。

  难点:等腰三角形性质的探索及证明。

  5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,**好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

  二、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

  三、教法分析

  《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

  四、学法建构

  《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

  1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

  2、向学生渗透探究、发现的学习方法,培养他们在合作*同探索新知识、解决新问题的能力。

  五、教学模式

  本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程**的教学理念。

  《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

  提高学生的自主意识和合作精神。

  六、教学程序和设想

  《数学课程标准》强调,教师应发扬教学**,成为学生数学学习活动的**者、引导者、合作者。据此本节课我分以下环节**教学。 (一)创设情境,观察联想。 1、多**展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形) 2、两幅图中都有哪种几何图形?(等腰三角形)

  从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。 (二)动手操作,揭示课题。 3、什么是等腰三角形?等边三角形?它们有何关系? 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

  5、小组交流发现的结论。(两底重合,折痕是顶角角*分线,底边上的高,底边上的中线。 )

  6、小组**用语言表达得出的结论。

  7、多**演示折叠过程,再现归纳得出的结论。

  8、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。

  波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动**流表达,使学生充分感知等腰三角形性质。

  (三)**思考,探究新知。

  9、对于观察得出的结论是否能进行论证,请学生动手试一试。

  放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

  (四)合作探究,交流创新。

  10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时**学生进行合作探究和交流,并作为合作者参与到学生的交流中。

  **学生探索、交流,有利于开阔学生的视野,形成一个既有**思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

  (五)引导评价,形成规律。

  11、小组合作交流后,请各小组一名****讲解(给学困生提供**机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角*分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

  12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

  学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角*分线互相重合。

  运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向**,激励学生要敢于迎接挑战,不断追求,锻炼意志。

  13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

  (六)实践应用,巩固提高。

  例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

  把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。锉炅废(抢答) ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

  ②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数ネü能力训练题,提高学生分析问题和解决问题的实践能力。

  ③应用:某厂车间的.人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

  (七)反思归纳,形成结构。

  1、引导学生对学习过程进行小结:

  ①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

  ②所学知识能解决哪些实际问题?

  ③本节课所运用的学习方法对你今后学习有什么启示?

  2、布置作业:(分层布置)

  这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

《等腰三角形性质》教案4

  教学目标

  1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学重点

  了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学方法

  观察法

  教学后记

  教学内容及过程学生活动

  一、复习:

  1、什么是等腰三角形?

  2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

  3、试用折纸的办法回忆等腰三角形有哪些性质?

  二、新课讲解:

  之前,我们已经证明了有关*行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

  同学们和我一起来回忆上学期学过的公理:

  1、两直线被第三条直线所截,如果同位角相等,那么这两条直线*行;

  2、两条*行线被第三条直线所截,同位角相等;

  3、两边夹角对应相等的两个三角形全等;(SAS)

  4、两角及其夹边对应相等的两个三角形全等;(ASA)

  5、三边对应相等的两个三角形全等;(SSS)

  6、全等三角形的对应边相等,对应角相等。

  由公理5、3、4、6可容易证明下面的推论:

  推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)

  证明过程:

  已知:∠A=∠D,∠B=∠E,BC=EF

  求证:△ABC≌△DEF

  证明:∵∠A=∠D,∠B=∠E(已知)

  ∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)

  ∠C=180°—(∠A+∠B)

  ∠F=180°—(∠D+∠E)

  ∠C=∠F(等量代换)

  BC=EF(已知)

  △ABC≌△DEF(ASA)

  这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

  三、议一议:

  (1)还记得我们探索过的等腰三角形的性质吗?

  (2)你能利用已有的公理和定理证明这些结论吗?

  等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。

  定理:等腰三角形的两个底角相等。

  这一定理可以简单叙述为:等边对等角。

  已知:如图,在ABC中,AB=AC。

  求证:∠B=∠C

  证明:取BC的中点D,连接AD。

  ∵AB=AC,BD=CD,AD=AD,

  ∴△ABC△≌△ACD(SSS)

  ∴∠B=∠C(全等三角形的对应边角相等)

  四、想一想:

  在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?

  应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。

  推论等腰三角形的顶角的*分线、底边上的中线、底边上的高互相重合。

  五、随堂练习:

  做教科书习题第1,2题。

  六、课堂小结:

  通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。

  七、课外作业:

  同步练习

  板书设计:

  这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

  学生充分讨论问题1,借助等腰三角形纸片回忆有关性质

  让学生尽可能回忆出来,然后再考虑哪些能够立即证明

  让同学们通过探索、合作交流找出其他的证明方法

  学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。

《等腰三角形性质》教案5

  【教材分析】

  这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的*分线互相重合”的性质.本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。

  【学情分析】

  在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。

  【教学目标】

  1、知识和技能目标:

  能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。

  2.过程和方法目标:

  经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

  3.情感和价值目标:

  培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。

  【教学重点和难点】

  1.教学重点

  等腰三角形的性质及应用

  2.教学难点

  等腰三角形性质的建立

  教学过程

《等腰三角形性质》教案6

  教学目标

  重难点

  1、知识与技能

  (1)理解掌握等腰三角形的性质.

  (2)运用等腰三角行的性质进行证明和计算.

  (3)发展合情推理,培养观察、分析、归纳问题的能力.

  2、过程与方法

  通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

  3、情感态度与价值观

  (1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.

  (2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.

  (3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

  4、教学重点:等腰三角形的性质的发现和应用.

  5、教学难点:等腰三角形性质的证明

  教学过程

  (交互式白板使用功能)

  1、情境创设

  问题:地震过后,同学用下面方法检测教室的房梁是否水*:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水*,你知道为什么吗?1。提出问题。

  2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

  带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水*。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

  3、动手操作

  (1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

  (2)上述过程中得到的

  问题(1):△ABC有什么特点?

  问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

  问题(3)让学生各抒己见的基础上介绍自己的想法

  要关注学生是否积极参与到活动中来。

  动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习


《等腰三角形》获奖说课稿 (菁选3篇)(扩展7)

——等腰三角形判定教学反思及建议 (菁选3篇)

等腰三角形判定教学反思及建议1

  本节课主要是让学生理解等腰三角形的判定方法及应用 ,并使学生通过对等腰三角形的判定方法的探索,体会探索学习的乐趣。在教学方面,主要按以下步骤进行教学,教学效果比较好。

  一、教学建议

  1、课前先简单复习等腰三角形的性质1“等边对等角”,这为后面讲等腰三角形的判定“等角对等边”留下铺垫。这样做也培养了学生数学思维的严密性。

  2、在学习等腰三角形的判定的时候,教师一定要创设一种切合实际的背景出来,从而使学生明白数学与实际生活紧密相连,学好数学,才能解决生活中的难题。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形判定的掌握更深刻得多。另外,在得出等腰三角形的判定以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。

  3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,先让学生讨论,再让学生上来板书,或者教师和学生先一起来分析解题思路,再让学生做,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习数学的积极性和创造性,从而使数学课堂充满活力。

  二、教学反思

  1.在授课过程中,教师要给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是判定的推导,还是判定的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。

  2.充分利用教材,在练习题与例题的编排上打破常规,让学生通过与生活紧密联系的背景,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的判定方法,再让学生用等腰三角形的判定方法来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。

等腰三角形判定教学反思及建议2

  这一课的教学重点是等腰三角形的判定定理及应用。教学难点是等腰三角形的性质定理与判定定理的区别。教学方法主要是讨论、探索、启发式。运用辅助工具是多**课件。

  等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。教材专门设计一个单元的内容来研究它。这个单元的重点之一就是等腰三角形的判定,同时这也是本章的重点之一。大纲对此的要求是“掌握等腰三角形的性质和判定,等边三角形的性质和判定,并能灵活应用它们进行论证和计算”(“灵活应用”是大纲中“了解、理解、掌握、灵活应用”四个层次中的最高要求)。在学过等腰三角形的性质和判定后,推理依据增多了,学生所接触到的题目难度也会明显加大,证明思路不再那么简单。近几年的许多中考题目常以等腰三角形为命题背景,结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目。所以要求学生能掌握并灵活应用。

  学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

  因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。发展学生的`动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想。再进一步发展学生**思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

等腰三角形判定教学反思及建议3

  1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。

  2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。

  3、教学中应自然地渗透数学思想方法,如:分类讨论等,学生初步形成有分类讨论的意识,巩固运用———熟识基本图形“角*分线——*行线——等腰三角形”使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的

  4、通过对问题的分析及实际问题的解决,注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的动机。获得研究的乐趣,久而久之甚至发展为志趣。

  5、存在的问题:

  (1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。

  (2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得*淡无奇。

  (3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。


《等腰三角形》获奖说课稿 (菁选3篇)(扩展8)

——三角形的分类说课稿

三角形的分类说课稿

  作为一位不辞辛劳的人民教师,时常需要用到说课稿,认真拟定说课稿,那么什么样的说课稿才是好的呢?以下是小编为大家整理的三角形的分类说课稿,仅供参考,欢迎大家阅读。

三角形的分类说课稿1

  一、说教材

  【教学内容】

  小学数学四年级下册

  【学习目标】

  1、通过实际操作对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形特点,分辨各类三角形。

  2、在活动中渗透分类及集合的数学思想,培养学生的归纳概括能力。

  3、在操作、思考中培养学生的动手能力,逐步发展学生的空间观念。

  4、教学重点、难点

  教学重点:认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

  教学难点:学生理解并掌握各种三角形的特征;

  【教学准备】

  CAI课件、不同类型的三角形、正方形纸。

  二、说教法、学法

  教法:以直观教学为主,运用观察动手操作,小组讨论等多种方法;

  学法:放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  (一)创设情境,激趣导入。

  分类是区分不同事物,发现事物本质特征的重要**。用生活中常见的图形来激发学生学习兴趣,抽象出的三角形展现在学生面前,学生看到的是一堆杂乱的三角形,会感觉太乱,从而感到有分类的必要,激发学生的探究欲望。

  (二)自主探究,创建数学模型

  A、动手操作,合作分类

  鼓励学生自主探究,然后放手让学生通过、合作探究来探索、体会、理解各类三角形的特点。这三点提示指向性强,为学生自主探索指明方向。方向明确,目标就完成一半了。

  B、全班讨论、汇报交流

  学生在经历了自主学习、合作探索之后,进行汇报的这一过程,让学生充分表达自己的想法,同学之间相互补充,教师只起到点拨指导作用,让学生在思维碰撞中提高认知能力。

  1、猜角游戏

  借助数量有限的材料得到按角分的三类三角形,这是一种不完全归纳法,它考察的对象是有限的。因此,这个猜角游戏中,我借助几个形象直观的三角形,通过几个有趣且有挑战性的猜测,使学生在观察、想象的过程中,围绕这些内角进行反复思考,并且通过演示、讨论、交流等形式,认识到结果的必然性。使知识的难点在轻松愉快的氛围中被“破解”,其功效犹如武术中的“四两拨千斤”。

  2、联系生活实际

  按边分的三角形,其实可以让学生始终从整体上认识三角形,即渗透等腰三角形是从一般三角形中变化而来的,而等边三角形也是从等腰三角形变化而来的,通过我演示突破了等边三角形是特殊的等腰三角形这一大难点。

  (四)全课小结

  三个开放式的总结方式,有助于学生梳理在本课学习中探索到的知识,学生可以根据自己的实际情况,选择适合自己的表达方式与同学交流,反思自己的学习行为和学习效果,从而明确今后的努力方向。

  (五)巩固运用 深化理解

  1、课件出示的填一填练习题,请个别学生到视频展台做此题。

  2、课件出示的判断题,请个别学生回答此题。

  (六)板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  本节课教学有以下特点:

  1.教师在课堂教学中注意为学生提供充分的时间和空间鼓励学生观察、操作、思考、质疑、验证、交流,使学生在活动中体验和感受各类三角形的本质特征。

  2.注重数学思想的渗透和学习方法的指导,注意了师生间、生生间的互动。

  3.教师充分利用教材中提供的素材挖掘教学资源,根据本班学生的具体情况,灵活安排教学活动,没有按教材的思路进行教学,教材是把本教学内容分成了两部分,首先通过分类认识什么是锐角三角形,什么是钝角三角形,什么是直角三角形,然后再通过后面的学习使学生认识等边三角形和等腰三角形。本节课没有按这样的思路进行,而是将这两个内容合在一起,这样一来使学生的活动空间更大,学生思考的空间更大,这样做也有利于调动学生学习的积极性,同时更有利于学生思维的发展和学生空间观念的形成。

三角形的分类说课稿2

  一、说教材

  1.教学内容

  九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。

  2.教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

  3.教学目标

  根据教材内容及学生的知识水*和心理年龄特点,制定了以下教学目标:

  (1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

  (2)培养学生观察,操作和抽象概括能力。

  (3)激发学生的主动参与意识,自我探索意识和创新精神。

  4.教学重点、难点的确定

  根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水*和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

  5.教学准备

  三角板、多**课件、学生用表格等

  二、说教法、学法

  根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为了完成本课的教学目标,设计了以下的教学过程。

  (一)创设情景,揭示课题

  由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

  (二)动手操作,探讨三角形分类方法

  1.根据角的特点,对三角形进行分类。

  新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变**的主动性、能动性、**性不断生成、张扬、发展、提升的过程。

  我设计了如下环节:

  (1)学生先是**思考、**操作,**探索分类。(事先给每个学生准备一个学袋:一张表格)

  ①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

  ②把分类的结果填在表中。

  小组交流

  学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

  (3)展示学生**作品,学生互评。

  (4)师小结归纳(边把分类依据板书出来)

  (5)鼓励学生给自己分类的三角形取个名字。

  让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

  (6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

  (三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。

  (四)全课总结

  让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

  (五)说板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  (六)作业设计。

  目的加强巩固,能更好的掌握本课知识点。

三角形的分类说课稿3

  我说课的内容是小学数学人教版教材第8册第135~136页,三角形的特征,三角形的分类,练习三十一的第1~3题。

  在此之前,学生已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,初步认识了三角形,直角三角形,为学生研究三角形的特征,从角的不同去把三角形进行分类做好了有力的知识支撑。三角形是最简单,也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。教材从学生说出哪些物体的面是三角形引出学习三角形的概念和三角形各部分的名称,通过实验发现三角形的稳定性。说说三角形的稳定性在生活中的运用,再从三角形的角去对三角形进行分类。结合教材,根据学生的知识现状和年龄特点,我试制定了以下教学目标:

  1、让学生理解三角形的概念,知道三角形各部分的名称,能够运用特征辨别三角形,了解三角形的特性,在生活中运用,学会从角的不同去把三角形分类。

  2、结合三角形特征的研究,培养学生的概括能力和抽象能力,在三角形的分类研究中,培养学生的观察能力、分析能力和比较能力,提高学生的探索能力。

  3、结合知识的运用,让学生感受到数学就在我们的身边,发展学生的空间思维。本课的重点是运用知识,通过观察讨论发现从三角形的角的不同对三角形进行分类。三角形的特征,并能运用特征辨别三角形。

  为了实现教学目标,我主要设计以下几个活动:

  1、找三角形:教师给学生一个装有长方形、正方形、四边形、五角星、六边形的信封,让学生在信封中找出三角形。通过这一找三角形,让学生在脑中再现三角形的表象。学生不能找出三角形,教师请学生折出一个三角形,再想一想,生活中的哪些物体的面是三角形的,交流说说。教师结合学生的回答,借助多**课件,在三角形实物中突出三角形。为三角形特征的探索作好思想准备。初步感知三角形与其他多边形的联系。

  2、观察、讨论学习三角形的特征。让学生观察**出示的三角形,想一想什么是三角形?**思考后和小组内讨论说说,教师结合学生的口答,板书画<图形>,不成功的图形、三角形。让学生逐步归纳出三角形的概念。然后让学生在纸上画一个三角形,学习三角形各部分的名称。教师出示一组图形,让学生判断哪个图形是三角形。再用三根小棒围一个三角形。通过这一活动,让学生在交流与验证中形成三角形的概念,并能根据三角形的特征画、围出三角形。让学生用三根不同长度的小棒摆三角形,让学生初步感知围成三角形的三条边的关系。运用三角形的特征判断什么样的图形是三角形。

  3、实验、感受三角形的稳定性。教师谈话出示木条做的三角形和四边形,让学生猜猜哪个图形坚固,然后请两个同学拉拉试一试,让学生感受到三角形的稳定性。教师运用**出示三角形的稳定性在生活中的运用,让学生了解三角形的稳定性在生活中的应用。教师再借助**录象,学校中有一些椅子坏了,请你修理一下,你准备怎样做?通过这一生活情境体验,让学生在实验、交流讨论中了解到三角形的稳定性及在生活中的运用。

  4、知识运用:(1)判断哪些图形是三角形。教师借助**出示一组图形,先和同桌说说再交流,说说原因。(2)判断下列三角形按角分类属于哪一类三角形。教师借助**出示图形,让学生**思考后口答交流说说为什么?(3)教师借助**创设情境:用一张纸遮住了三角形的一个角,只露出其中的一个角,首先是直角,让学生判断被遮住的是什么三角形?其次是钝角,最后是锐角,**学生进行判断,让学生判断有依据。(修桌椅)

  在本节课中,教师借助**,把生活中的物体的图形和三角形结合起来,**学生从生活中引入三角形。在课堂中通过观察交流、动手操作学习三角形的特征和分类,然后运用知识解决生活中的一些问题。让学生学习生活中的数学,在数学学习活动中学到知识,观察比较能力、分析概括能力及空间思维得到发展!

三角形的分类说课稿4

  一、教材简析

  “三角形的分类”是在学生认识了直角、锐角、钝角和三角形的基础上开展学习的,这一认识为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。教材分为两个层次:按角分为锐角、钝角和直角三角形及按边分为等腰、等边和一般三角形。学好这部分内容,为学习其他多边形积累了知识经验,这进一步学习三角形的有关知识打下了基础。

  二、教学目标

  (1)学生通过观察、操作、比较、发现三角形中角和边的特征,学会按一定标准给三角形分类,感受三角形与日常生活的联系。

  (2)培养学生的观察、比较、抽象、概括能力。

  (3)激发学生的主动参与意识,自我探索意识和创新精神。

  本课的教学重点是学会按角和边的特征给三角形分类;教学难点是让学生理解并掌握各种三角形的特征。教学准备有:多**课件,彩色卡纸,三角形*面图、三角板、量角器、直尺、数据表格等。

  三、教法学法

  根据新课程教材的特点与学生的实际情况,我坚持以学生自主观察、探索、思考、发现为主,教师引导为辅,结合现代化教学**让学生在观察三角形的过程中能结合自己以前所学的知识进行创新,从而获得新知,达到教学目的。

  四、教学过程

  情境导入:将我们班上的学生进行分类,该怎么分,让学生说出自己的想法师再紧接引导:在三角形这个大家庭里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们就根据三角形角和边的特点给它们分类。简单明了的明确本节课的学习任务。

  1、探究新知

  在这个环节中,我通过让同桌合作,并借助学具一起探讨三角形分类方法,让学生充分经历看一看、比一比、量一量的亲身体验,学生学习兴致很高,几分钟下来,几乎一个标准分下来,而且还能准确的说明理由,巧妙的抓住“角”的特征。

  (1)课件出示钝角、锐角、直角图形,让学生一一口答区分。

  (2)紧接着课件出示多个带上编号的三角形。

  让学生数一数这些三角形中锐角、直角、钝角的个数,并填入准备好的表中。以利于学生观察。(表格见课件)

  (3)让学生汇报交流成果,老师边**边引导学生自己总结规律。课件出示:从表面上,一个三角形最多有几个锐角?最少有几个锐角?最多有几个直角?几个钝角?通过讨论结出结论:

  即:有一个角是直角的三角形,叫做直角三角形。

  有一个角是钝角的三角形,叫做钝角三角形。

  三个角都是锐角的三角形,叫做锐角三角形。

  (4)用数学。把深刻的数学与*时的生活有机的联系起来,使数学学习充满了生命力。课件出示习题:认一认,说一说,各是什么三角形?学生通过自己动眼、动手、动口、动脑参与获取了新知,感受到了成功的喜悦,此时兴致盎然,趁热打铁,我在给予他们赞赏和鼓励的同时将教学内容引至下一个知识点。接下来是教学按边分类的三角形。

  (1)教师出示教具:将准备好的彩色卡纸剪好的三张三角形模型,指名学生带上直尺**来分别量一量这三个三角形的三条边。

  (2)学生量完汇报:有三种情况,即三条边都相等,有两条边相等,三条边都不相等。

  (3)师生共同归纳:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另一条边叫底;把三条边都相等的三角形叫做等边三角形;强调这两种情况属于特殊三角形。而等边三角形是特殊的等腰三角形。三条边都不相等的三角形也就是一般三角形。(课件出示)

  3、巩固练习:

  (1)画一个等边三角形和一个等腰三角形,分别量一量等腰三角形和等边三角形的各个角,谈谈自己有什么发现?

  (2)猜一猜,可能是什么样的三角形?(教师左手拿一个三角形,右手拿一张纸遮住三角形的一个或两个角,只露出一个角或两个角,让学生猜一猜可能是什么样的三角形?以起到让学生加深理解锐角、钝角、直角三角形的特征的效果。

  4、拓展练习:是让学生找一找身边的三角形,并把它的名字告诉同伴,让学生在用数学的同时,从中感受、体验到一个探索者的成功乐趣,从而增强学习动力和信心。

  五、说板书设计

  整堂课要求板书简单明了,将三角形按角、边分类的要点,展现在黑板上,以易于学生识记领会。

三角形的分类说课稿5

  《小学数学学科德育指导纲要》中明确指出:通过小学数学学科进行德育主要从以下几方面研究:

  一、爱祖国、爱科学的教育。

  二、初步的辩证唯物**观点的启蒙教学。

  三、情感态度与个性品质的教育。

  四、良好学习方法和习惯的培养。

  今天,我以一节课为例,说说“在数学学科中如何进行德育渗透”我说课的内容是人教版四年级第五单元第三课时《三角形的分类》。

  一、教材分析

  1、教材的地位作用和编排意图

  本节课的教学内容是学生已认识了直角、钝角、锐角和三角形的基础上学习的,教材分了两个层次:三角形按角可分为直角三角形,钝角三角形,锐角三角形,并通过集合图来体现分类不重复、不遗漏的原则;按边的不同可分等腰三角形和其它三角形,着重引导学生认识等腰三角形,等边三角形边和角的特征。教学完分类方法后,教材还安排一些相应的练习,其意图在于培养学生的比较、抽象、概括能力,提高学生解决一些实际问题的能力,渗透集合思想,发展空间观念。学好这部分知识为以后进一步学习三角形的有关知识打下基础。

  2、教学目标

  依据课程标准,教材内容和学生已有的知识水*我制定了教学目标。

  (1)理解分类要按同一标准,会把三角形按角和边进行分类,并能解决一些简单的实际问题。感受三角形与日常生活的联系。

  (2)经历三角形按不同标准分类的过程,体验整体分类的思想方法。培养学生观察分析能力、动手操作能力和形象灵活的思维能力。

  (3)在学习过程中,沟通知识之间的联系,激发学生主动参与意识、自我探究意识和创新精神,学会合作学习。

  3、教学重、难点:

  在教学的过程中,根据教材的要求和学生实际情况,我确定的教学重点是让学生会把三角形进行分类。难点是理解等腰三角形与等边三角形的关系。

  二、教法学法

  学生对三角形已经有了初步的认识,在按三角形不同的特点分类时,为学生搭设*台,让学生在动手操作、合作与交流中,探究分类的方法。通过看一看,想一想,量一量,分一分,猜一猜等多种形式的学习,为学生提供更多“对话”的机会。借助直观教具、学具,多**的演示等**,使学生获得对三角形边、角特征的进一步认识,进而学会三角形的分类。

  三、教学过程

  围绕以上总体思路,我设计了“五个环节进行教学。一、谈话导入,理解分类标准。二、小组合作,让学生进行分类。三、对比分类,理解各部分关系。四、巩固练习,应用分类。五、课堂总结。

  具体教学过程如下:

  一、谈话导入,理解分类标准。

  如果要把全班同学分一下类,可以怎么分?还可以怎么分?(此环节设计:请学生按自己的标准给教室中的人分类,这样不但创设了轻松**的教学情境,同时也发散了学生的思维,渗透了分类的数学思想,为多角度地给三角形分类做好了铺垫。也对学生进行了数学学科的德育渗透。)出示六个三角形,引导学生观察:它们有什么不同?这节课我们就根据三角形的不同的特点给它们分类。(板书:三角形分类)

  二、小组合作,让学生进行分类。

  (从德育方面则注重学生个性张扬和团队合作精神的培养。通过互动,学生体验到人格尊重,主动参与的乐趣和能动性的提升,学习动机和学习兴趣受到激发。在不断的学习实践中培养自主学习的能力,促进学生整体素质全面提高。)

  为此,我安排以下教学环节。1、观察六个三角形,思考:如何对三角形进行分类?你准备按什么标准进行分类?(搭设*台。目的是为了鼓励学生从不同角度去观察、分析、发现不同三角形所具有的特点,为后面的分类奠定基础。也对学生进行了情感态度和个性品质的教育。)2、根据搭设的*台,引导学生**思考、探究分类的方法。(按边的不同,角的不同进行分类。此处培养学生**思考能力,并对学生进行德育渗透,培养学生克服困难的精神。)3、小组合作,探究分类。(此处通过小组合作学习,使学生受到教育:可以使学生意识到个人目标与小组目标之间是相互依赖的关系,只有在小组其他成员成功的前提下,自己才能取得成功,培养学生合作意识和创新精神。还可以从小让他们养成严肃看待他人学习成绩的好习惯。)4、先选取按角分类的小组汇报:你们小组是怎样分的?为什么这么分?课件出示按角分类的结论。(此环节设计让学生在数学学习中感到自己就是学习的主人,体验到成功的快乐,树立学习的信心。在教学过程中,把德育做到无痕渗透,使德育润物细无声。)

  然后整理提升如果我们把三角形看成一个大集体的话,这个集体可以分成这样的三类。(边说课件边出示集合图)5、解决按边如何分类。①选取按边分类的小组进行汇报。在学生汇报过程中借助多**演示了解等腰、等边三角形各部分名称。并让学生说说在哪里见过?(让学生感知几何图形在我们的生活中随处可见,增强了学生对数学来源于生活的认识。加强了对学生的思想教育,感受到生活中的美。)②引导学生折一折、量一量、说一说你发现了什么?思考:你会用集合圈来表示刚才我们的.发现吗?(出示集合图。借助**演示,从等腰三角形的认知出发,从等腰三角形中寻找特殊,认识等边三角形,这样在探究的过程中渗透了等腰三角形和等边三角形的关系。渗透“异中求同,同中求异”的辨证思想。这是数学教学中的德育渗透点。同时突破了本课的教学难点,让学生体验到成功的喜悦。)

  三、对比分类,理解各部分关系。

  引导学生对比两种分类,说说你发现了什么?(设计这样的环节主要是学生再次经历三角形分类的过程,沟通数学知识之间内在的联系,使学生懂得一切事物都是相互联系的。渗透辨证唯物**观点的教育。)

  四、巩固练习,应用分类。

  1、游戏:猜一猜,躲在木板后面的会是什么三角形呢?课件出示(采用游戏的练习方式,不仅增加了题目的趣味性,使学生体验成功的快乐,增强了他们的自信心,使他们受到思想教育。同时又进一步巩固了三角形的特征。)

  2、辨一辨下列说法正确吗?(用手势表示)(要求学生用手势表达,目的是教育学生辨明概念,促使人人参与学习,达到面向全体的目的。)

  3、送三角形回家。(课件出示。在掌握基础知识的前提下进行拓展练习,可以深化教学内容,培养思维的灵活性。同时使学生感受到学数学,用数学的快乐,使数学课堂中的德育无处不在。)

  4、动手实践。在点子图上画一个你喜欢的三角形。(四个习题的设计由浅入深,把知识巩固和游戏有机结合起来,让学生既巩固了知识,又产生了进一步学习的兴趣和愿望。培养了学生学数学、用数学的意识。)

  第五环节:课堂总结

  今天这节课同学们通过动手操作、小组合作,共同研究了三角形的分类,谁来说说你是怎样给三角形分类的?(通过学生自主总结梳理知识,充分发挥学生学习的主体作用。本节课处处蕴藏着德育教育素材,备课中我认真挖掘,悉心引导,适时地对学生进行德育渗透,使每一位学生在学数学的过程中获得相应的德育知识。)

三角形的分类说课稿6

  一、本节课的内容是四年级下册第五单元里的一个内容:

  三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、本节课的

  知识目标:

  1、会根据三角形角、边的特点给三角形进行分类。

  2、认识各种三角形。

  能力目标:

  经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。

  情感目标:

  激发学生的主动参与意识,培养学生的合作精神。

  三、教学重点:能够按三角形角的不同和边的不同给三角形分类。

  教学难点:引导学生认识各类三角形的特征。

  四、本节课设计理念和施教措施

  为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:

  你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。

  培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。

  此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。

  为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。

  总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。

三角形的分类说课稿7

  一、教材解读:

  1、教材的内容:人教版实验教材四年级下册第五单元第三课时

  2、教材简析:三角形分类是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。学好这部分知识为以后进一步学习三角形的有关知识打下基础。

  3、教学目标:

  (1)通过观察与操作,发现三角形中角与边的特征,学会按一定标准给三角形分类,感受三角形与日常生活的联系。

  (2)经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  4、教学重点:学会给三角形分类。

  5、教学难点:找出三角形角与边的特征。

  6、教学准备:多**课件,各种不同的三角形纸片若干袋(每袋都一样),三角板,量角器,直尺、双面胶若干

  二、教学设想

  自主学习的过程实际就是教学活动的过程。以活动促学习是本节的教学定位。通过情景创设,学生经历探索发现、讨论交流、**思考等活动,逐步建立对三角形角与边特征的认识。通过看一看、想一想、量一量、分一分、连一连、猜一猜等多种形式的学习,为学生提供更多数学对话的机会,通过教具、学具、多**的运用,让学生经历从现实空间到几何空间的抽象变化的过程,从而获得对三角形边、角特征的认识,进而学会给三角形分类。

  三、教法与学法

  教法:创设情景为自主探究搭建*台;积极引导为有效学习指明方向;主动参与为合作交流营造氛围;激励评价为主动学习鼓励加油。学法:观察分析在情景中提出问题;探索思考在操作中解决问题;分组交流在探索中理解问题;**反思在总结中内化问题。

  四、教学流程

  1、情景导入。问:你能按一定标准给教室里的人分分类吗?利用学生身边的事物,往往更能激起学生的求知欲望。同时为多角度的给三角形分类作好铺垫。

  2、探索新知。出示一些三角形纸片,问:三角形有哪些特征呢?(三个角、三条边、三个顶点)手拿实物问:每个三角形的角和边一样吗?今天我们就根据三角形各自的边和角特征来分分类。学生动手探索分3个环节,前两个环节采用比赛的形式,促使学生考虑合理分工、团结合作,提高课堂效率。

  ①观察与测量。分给每个学习一袋三角形纸片、一张彩色纸板和双面胶(每个小组的三角形一样),引导学生在小组长的带领下,进行观察、测量、记录各个三角形的特征。

  ②整理、分类。根据记录的数据,经过小组分析、讨论,将分类后的三角形贴在彩色板上。

  ③全班展示交流、师生点评。

  ④归纳小结。

  给出锐角三角形、直角三角形、钝角三角形的名称,找出不同点和相同点,出示集合图,讲解分类的不重复和不遗漏原则;给出等腰三角形、等边三角形的名称,找出它们的特征。

  3、巩固练习

  ⑴连一连。(课件出示)

  等腰三角形等边三角形锐角三角形钝角三角形直角三角形

  目的是让学生在练习中巩固各种三角形的特征,并利用这些特征给三角形分类。

  ⑵游戏,猜一猜。

  给出三角形的一个角或两个角,猜一猜可能是什么三角形?目的是让学生进一步巩固锐角三角形、直角三角形、钝角三角形的特征。深刻辨别它们之间的区别和联系。当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  ⑶判断。(课件出示)

  ①一个三角形里如果有两个锐角,必定是一个锐角三角形。()

  ②所有的等腰三角形都是锐角三角形。()

  ③所有的等边三角形都是锐角三角形。()

  目的是辩明概念。同时,要求学生用手势表示,能促使人人参与学习,达到面向全体的作用。

  ⑷填空。

  ①已知等腰三角形的两边长为4cm和5cm,则它的周长为()。

  ②已知等腰三角形的周长为17cm,其中一条边长为7cm,则它的其腰长为()。

  ③已知等腰三角形的两边长分别是4cm和8cm则它的周长为()。

  在巩固等腰三角形特征的同时又注重培养学生灵活运用所学知识解决问题的能力。

  4、全文小结:以谈收获和实际应用的方式结束。

三角形的分类说课稿8

  《小学数学课程标准》明确提出“有效地数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”在这一新的理念的指引下,我们不断地实践,不断地探索,正当我们满怀信心地投身新的教学**的洪流之时,新的困惑产生了,课堂上学生们看似积极动手,自主探索,合作学习,热热闹闹场面空前,过后却空空如也,一头雾水。这不得不引起我们新的思索,怎样才能使学生的动手实践、自主探索与合作交流真正地落到实处呢?在人教版小学数学四年级下册《三角形的分类》一课的教学中,我努力地做了这方面的尝试,尽量追求动手实践,自主探索,合作交流,猜测——验证——结论等学习方式的有效性,努力构建务实充实的有较新课堂。

  下面,我主要从四个方面介绍我的教学设想。

  一、教材简析。

  《三角形的分类》是人教版小学数学四年级下册第五单元《三角形》中的第二节内容。在此之前学生已经懂得了角的分类,能区别锐角、钝角、直角、*角与周角,而且刚刚进行了“三角形的特性”的学习。根据学生已有的知识经验和认知水*,我制定了如下的教学目标:

  1、发现和认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形。知道这些三角形的特点,并能够辨认和区别它们。

  2、通过观察、操作、合作、交流等探索活动,使学生经历认识各种三角形的过程,学习从不同角度观察、思考、分类的数学思想,感受解决问题的方法的多样性。培养学生观察能力、操作能力和形象灵活的思维能力,发展初步的空间观念。

  3、养成良好的观察、分析的习惯,培养合作意识。感受数学与生活的紧密联系。

  这样的目标既注重了知识的传授和能力的培养,更注重了学生经历知识获得的过程,学会与同伴交流,从中获取知识,体验快乐,感悟数学伴随着我们的生活。本节课的教学重点是发现和认识各类三角形的特征,并能辨认和区别它们。难点在于按边给三角形分类,理解等边三角形是一种特殊的等腰三角形,之所以称为难点,是因为它的概念系统比较复杂,已经是多级分类了。

  二、教法、学法。

  新的课程标准指出,“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”,在这一理念的指导下,我采取“引——扶——放”的教学方法,教学中我精心设计引导学生在不知不觉中回顾旧的知识,引导学生自然体验,感受分类的必要性;接着指导学生讨论出分类标准,提出具体的合作学习和动手操作的要求,学生在此基础上进行合作分类活动,这就是所谓的“扶”;最后放手让学生走入生活,更进一步了解等腰、等边三角形,再次放手让学生畅谈本节课的收获的形式来小结本节课的学习内容。进一步增强课堂数学学习活动的实效性。也体现出教师是其**者、引导者与合作者的角色。

  学生作为主体,学习中的参与状态和参与度是决定教学效果的重要因素。因此在学法上,通过“感受体验——经历操作——交流感悟”的方法,把学习的主动权交给学生,让学生在充分的自主活动中完成本节课的学习。

  三、教学流程。

  这节课为了体现学生是数学学习活动的主人,为了完成教学目标,我以学生的学为立足点,设计了如下的教学程序:

  (一)回顾展示,感受分类的必要。

  课始我以一个活动角引起学生对已有知识的回忆,如判断直角、锐角、钝角的方法,三角形有几个角,几条边等,为后面将要进行的分类打下了坚实的基础。展示学生自己制作的三角形,不仅由此使学生体会到分类的必要,感受到数学学习是有用的,同时让学生体验到成功的快乐,从而对本节课的学习产生浓厚的兴趣。

  (二)合作分类,探索图形特征。

  小学生由于受能力与经验的制约,他们的探究往往不能很好地确定重难点,容易导致探究活动热烈而缺少实效。因此教师在分类之前先引导学生对三角形的各部分进行观察、比较,探讨出分类的标准,然后对小组合作学习提出了具体详细的要求,充分体现了教师的指导与引领作用,提高了后面探究活动的实效性。

  探究按角分类的活动中,运用“角的特征分析表”使学生的探究活动目标更明确,同时又能使学生对表格的观察中发现诸如“每个三角形至少有两个锐角”“三角形中最多也只有一个钝角”……更利于学生对各类三角形的特征的认识。

  本节课的难点就是按边给三角形分类,这是学生难以理解的内容,因为它的概念系统比较复杂,已经是多级分类了。为了帮助学生突破这一难点,教师设计了“三角形边的特征分析表”,为学生探究这一难点知识搭建了踏脚石,减缓了梯度。还有一个难点,等腰三角形和等边三角形的关系,教师引导回顾正方形和长方形的关系,让学生从旧知识迁移到新知识。对等腰三角形和等边三角形角的研究采用了猜测——验证——结论的方法,体现了数学的一种思考和学习方法,学生收获的不仅仅是一个知识点,更重要的是一种数学的思想方法。

  (三)走入生活,巩固提高拓展。

  生活中的等腰三角形和等边三角形的寻找和欣赏活动,加深了学生对难点知识,按边分出的这两种特殊的三角形的特征的认识,巩固了知识,还让学生更加真切地体会到生活中处处有数学。学生畅谈收获的环节实际是个回顾、反思、梳理的过程,更有益于知识的巩固。作业中布置的搜集金字塔的知识既体现了信息时代对孩子们的基本技能的训练,又对课堂知识是一个拓展,开阔了学生的知识视野。

  四、教学理念。

  本节课中我力图体现以下理念:

  (一)动手操作,合作交流注重课堂实效。

  几何初步知识无论是点、线、面、体的特征还是图形的特征,性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。

  基于这样的考虑,教学中大量的时空都是让学生去探索、去实验、去发现。从而让学生在动手操作、积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。在这一活动中,教师尤其关注的是学习活动的实效性。给三角形分类之前,教师先引导学生仔细观察,这么多的三角形都有什么不同呢?探讨出分类的标准后,才进入小组合作阶段。操作之前,教师又提出具体详细的合作要求,“请听完要求,再开始。请你们同桌两人为一组,取出学具袋里的一号至七号三角形和表一(三角形角的特征分析表),认真分析这些三角形角的特征,填写表一,再把这些三角形分类摆放好”。课堂中诸如此类的考虑还有很多,总之,每一步的设计都要考虑是不是落到了实处,是不是起到了应有的作用,是不是达到了该有的效果。

  (二)知识获取,问题解决渗透数学思想。

  新课程基本理念强调数学课程的发展性,也就是我们的数学教学要着眼于孩子终身的发展。课堂上我们不仅仅只是让学生获取知识,更重要的是得到一些终身受益的东西。数学的思想方法是数学知识的灵魂。在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。

  本节课的教学中,有不少这一方面的体现,如解决问题方法的多样性与优化选择问题,判断角的类型方法很多,有孩子说用量角器测量,用眼睛观察,用三角板上的直角去比等等,这些方法中,要结合实际情况灵活选取最简单快捷的方法。再例如操作活动判断三角形边、角是否相等时,可以测量,也可以对折,那么哪种方法更简单快捷呢?还有,研究等腰三角形和等边三角形角的特征的时候,我们渗透了“猜测——验证”的方法。总之,在教学中,教师既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,有助于学生的终身学习和发展。

  教学永远是一门遗憾的艺术。在这节课中还有许多的不足之处,例如:在教学中,虽然渗透了方法的优化选择,但仍有部分学生不能领会其含义,依然要选用比较费时也没有必要的方法操作,造成分类的操作活动速度太慢。学生在操作中的误差问题也是值得研究的,因为操作活动中的确存在着很接近相等但却又差那么一点点的情况,但因为时间关系,而忽略了。教师应该饱含热情,用自己激昂的情绪感染孩子们,好像黑板上的数字都会跟着教师的情绪而动,但这点教师做得还不是很让人满意。总之,这节课还是缺憾。真诚地希望得到各位专家的批评和指正!

三角形的分类说课稿9

  一、本节课的内容是四年级下册第五单元里的一个内容:三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、本节课的知识目标是:

  1、会根据三角形角、边的特点给三角形进行分类。

  2、认识各种三角形。

  能力目标是:经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。

  情感目标:激发学生的主动参与意识,培养学生的合作精神。

  三、教学重点:能够按三角形角的不同和边的不同给三角形分类。

  教学难点:引导学生认识各类三角形的特征。

  四、本节课设计理念和施教措施

  为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:

  你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。

  培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。

  此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。

  为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。

  总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。

三角形的分类说课稿10

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学教科书(北师大版)四年级下册第24至25页的内容及相关练习题。

  2、教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

  3、教学目标

  根据教材内容及学生的知识水*和心理年龄特点,制定了以下教学目标:

  (1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

  (2)培养学生观察,操作和抽象概括能力。

  (3)激发学生的主动参与意识,自我探索意识和创新精神。

  4、教学重点、难点的确定

  根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能近角和边的特点给三角形分类,因此这是教学重点。

  根据学生的认识水*和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。

  因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

  5、教学准备

  除了准备彩色卡纸,三角形*面图等,课前布置学生把课本P113图2的三角形剪下来。

  二、说教法、学法

  根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“分一分”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。

  在教学中,首先把握新旧知识的衔接点,利用教材12个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为了完成本课的教学目标,设计了以下的教学过程。

  (一)创设情景,揭示课题

  1、出示图案(采用直观教具吸引学生的***)

  这个图案像什么?由什么图形拼成的?

  2、考考你的眼力,这几个三角形的形状一样吗?什么不一样?(让学生具体说一说)

  在三角形这个大兵营里,它们的角和边各有特点。这节课我们就根据三角形角和边的特点给它们分类。板书课题:三角形的分类

  由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

  (二)动手操作,探讨三角形分类方法

  1、根据角的特点,对三角形进行分类。

  新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变**的主动性、能动性、**性不断生成、张扬、发展、提升的过程。

  我设计了如下环节:

  (1)学生先是**思考、**操作,**探索分类。(事先给每个学生准备一个学袋:一张表格和一张彩色卡纸)

  ①学生根据表格对这12个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

  ②把分类的结果贴在彩色卡纸上。

  ①②③④⑤⑥⑦⑧⑨⑩1112

  锐角个数

  直角个数

  钝角个数

  (2)小组交流

  学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

  (3)展示学生**作品,学生互评。

  (4)师小结归纳(边把分类依据板书出来)

  (5)鼓励学生给自己分类的三角形取个名字。

  让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

  (6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

  2、游戏巩固

  利用教材第25页猜猜来个教学游戏:

  猜出被信封遮住的可能是什么三角形,答对者,就把里面的三角形送给他。

  通过数学游戏,可以激发学生学习兴趣,还可以巩固新知、形成技能。并对直角三角形、锐角三角形、钝角三角形的相同点、不同点有了进一步的了解。

  3、指导学生根据边的特点,对三角形进行分类。

  由于让学生观察的三角形个数较多,要逐个测量边的长度再进行比较,总结归纳比较费时。所以这一环节安排以小组为单位,利用老师发放的学袋,由小组长来安排分工测量,填好研究报告单,然后一起观察,一起讨论,一起分类。师再依据小组**发言后引导归纳,从而引出不等边三角形和等腰三角形,等边三角形。

  (三)小小辩论会

  为了帮助学生理解“等边三角形也是等腰三角形”设计了这么一个环节。

  由正、反两方充分阐述自己的观点,师再适时点拨,让学生在热烈的学习氛围中,巩固所学知识并更上一台阶。

  (四)全课总结

  今天你学得开心吗?什么事让你开心?让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

  四、说板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  板书设计:

  三角形分类

  (学生三个锐角锐角三角形(学生三边不相等不等边三角形作品一个直角直角三角形作品两边相等等腰三角形展示)一个钝角钝角三角形展示)三边相等(等边三角形也是等腰三角形)

三角形的分类说课稿11

  一、教材分析:

  “三角形分类”是人教版四年级下册第五单元第2节内容的第1课时,是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、教学目标:

  知识与技能:通过观察与操作,会按角与边的特征给三角形分类

  过程与方法:经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  情感态度:激发学生的主动参与意识、自主探索意识。

  三、教学重点:学会给三角形分类。难点:会按角与边的特征分

  四、学情分析:三角形学生早已接触,已经认识了直角、钝角、锐角以及三角形,在日常生活中也有丰富感知。

  五、教法与学法

  教法:创设情景、积极引导、主动参与、激励评价

  学法:观察分析、探索思考、分组交流、**反思。

  六、教学流程

  一、创设情境、激趣导入

  同学们,我们已经认识了三角形,谁来说一说?有三位老朋友已经恭候我们多时了,看看它们是谁?课件出示三个角,指名回答。你能说说什么样的角是锐角、直角、钝角吗?学生一一作答。我想知道这个角是不是锐角该怎么办?(用量角器或三角板)

  导入课题,课件出示由三角形拼成的小船,(每组一份)老师给大家带来了一件礼物,看看它像什么?它是由什么图形拼成的?这些三角形的形状都一样吗?这节课我们就一起给三角形分分类,板书课题。

  二、自主探索、合作交流

  三角形有角和边,我们学过角的分类,那三角形又可以按照什么来分呢?(按角分、边分)教师板书:角、边

  (一)按角分1、学生尝试分类,小组交流后集体汇报

  把三个角都是锐角的分一起板书:三个锐角

  把都有一个直角的分一起板书:一个直角

  把都有一个钝角的分一起板书:一个钝角

  分别起名字,指名回答。(板书:锐、直、钝角、三角形)

  仔细观察这三类三角形有什么异同?(同:至少都有2个锐角。异:另外一个角分别是锐角、直角、钝角)

  每类三角形中最大的角跟它的名称有什么关系?引导发现(最大角是什么角,它就是什么三角形)

  2、用集合图表示

  如果把三角形比作一个大家庭,按角分,这个大家庭里有几个小家庭?是哪几个?指名回答,教师用课件出示集合图。

  3小游戏—猜猜它是什么三角形(要看最大角不能单凭一个锐角)

  (二)按边分

  1教师提出要求,学生小组交流后汇报。

  三条边都不相等(板书:三边不等)有两条边相等(板书:两边相等)三条边都相等(板书:三边相等)

  试着起名字,教师点拨并适时板书:不等边、等腰、等边三角形。

  2、明确等边三角形是特殊的等腰三角形。

  **:等边三角形是等腰三角形吗?学生展开讨论,引导学生明确:只有有两边相等就是等腰三角形。(板书:特殊)

  3、用集合图表示

  4、等腰三角形和等边三角形除了边的特点外,看看它们的角有什么特点?想办法验证一下。(量角器或对折)

  3、认识等腰三角形和等边三角形。

  腰、底角、顶角。等边三角形又叫正三角形,每个角都是60度三、巩固练习、反馈提升

  1、判断、在钉子板上为三角形、完成做一做**进洞

  2、小组合作猜猜我是谁?只露一个角,可能是什么?为什么?

  四、课堂总结、检测效果。

三角形的分类说课稿12

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学教科书(北师大版)四年级下册第27页至29页的内容及相关练习题。

  2、教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。

  3、教学目标

  根据教材的内容及学生的知识现状和年龄心理特点,我制定了以下教学目标。

  ①学生通过观察、操作、比较、发现三角形角和边的特征,会给三角形分类,理解并掌握各种三角形的特征。

  ②培养学生观察能力,操作能力和抽象概括能力。

  ③激发学生的主动参与意识,自我探索意识和创新精神。

  4、教学重、难点的确定

  依据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能按角和边的特征给三角形分类,因此这是教学重点。

  根据学生的认知水*和年龄特征,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃,因而我认为“三角形分类”的教学难点是学生能理解并掌握各种三角形的特征。

  5、教学准备

  多媒课件、彩色卡纸、三角形*面图 、固体胶、剪刀等。

  二、说教法、学法

  根据新课程教材特点和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、分组讨论等多种方法,采用现代化教学**结合教材,让学生在“想一想”“做一做”“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力、语言表达能力和自学能力。

  在教学中,首先把握新旧知识的衔接点,由三角形的认识,引出课题“三角形分类”。接着引导学生自学课本,放手让学生动手操作,小组讨论交流,寻找三角形分类的方法。最后让学生各抒己见,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为达到本课的教学目标,我设计了以下教学过程。

  教学环节 教学流程 设计意图

  复习铺垫

  1、师:同学们,你们说说以前学过哪些图形?三角形是什么样的?谁想上黑板画给大家看一看?

  2、师:从同学们画的三角形中我们可以看出三角形可能存在这三个角。(课件出示)

  ①叫角。

  ②三角形有三个特点,(课件出示)

  有边,角,顶点。

  让学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打下基础。

  揭示课题

  在三角形这个大家族里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们根据三角形角和边的特点给它们分类,好不好?

  (板书:三角形分类) 揭示课题的同时让学生明确了新课的学习任务,使学生学有目标,克服了盲目性。

  探究新知

  动手操作,探讨三角形分类方法

  小组讨论,动手操作。给每小组学生分一张彩色卡纸,让学生把附页上的三角形剪出进行分类,分类的结果贴在彩色卡纸上,让学生选**展示他们的劳动成果,并说说他们是用什么方法进行分类,然后:

  ①学生**自评作品

  ②学生互评

  ③老师点评 通过小组讨论、交流、探索出三角形分类方法这一话动中,不仅激发学生的学习兴趣,而且真正让学生动眼、动手、动口、动脑参与获取知识的过程,感受到了成功的喜悦。学生的自评、互评、老师的点评体现了课程标准中评价方法的多样化。

  教学环节

  教学流程 设计意图

  探究新知

  按角分类的三角形

  按照教材顺序依次展示第一类锐角三角形,第二类直角三形,第三类钝角三角,并出示相应的课件引导学生归纳、概括出这三种三角形的特征。

  锐角三角形 直角三角形

  三个角都是锐角 有一个角是直角

  钝角三角形

  有一个角是钝角

  在学生动手操作充分感知的基础上,教师点拨,引导学生归纳出按角分类的三角形特征。培养学生分析问题和解决问题的能力,同时也突破了难点。

  探究新知 按边分类的三角形

  1、等腰三角形的引入

  展示学生以边分类的彩色卡纸。问:学们有什么新发现?课件出示:

  引导学生归纳出等腰三角形的特征。 通过学生观察、讨论 、探究出等腰三角形的特征,培养了学生的探究精神。

  2、等边三角形的教学

  问:同学们再仔细观察等腰三角形都只是两条边相等吗?看不出可以拿尺子量一量。

  学生归纳:(课件展示)

  三条边都相等的三角形叫做等边三角形。 通过让学生认真观察等腰三角形,并大胆猜想,动手测量探索、实践。使学生的主体性得以更大程度上的发挥,动手能力、思维能力和创新能力得到较大的发展。

  巩固运用 深化理解

  1、教材28页上的第一道练习题,请个别学生到视频展台做此题,

  2、游戏巩固

  老师左手拿一个三角形,右手拿一张卡纸遮住三角形的两个角,只露出一个角,让学生猜这会是什么样的三角形? 设计第一道练习题目的在于巩固新知,形成技能,培养学生联系新知识,灵活解决问题的能力。

  当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用学生喜闻乐见的游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  全课小结

  大家谈收获

  通过今天这节课的学习,

  你有什么收获。

  让学生谈谈经过自己动手操作、小组合作、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生 的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。

  四、说板书设计

  本节课的板书为了突出学生的主体地位,突出学习重点,解决知识难点,整个黑板主要用于展示学生按角和边进行三角形分类的彩色卡纸作品。这样安排既便于学生观察,又有利于激发学生的学习积极性。


《等腰三角形》获奖说课稿 (菁选3篇)(扩展9)

——《三角形分类》说课稿

《三角形分类》说课稿

  在教学工作者实际的教学活动中,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。那么问题来了,说课稿应该怎么写?下面是小编为大家收集的《三角形分类》说课稿,希望能够帮助到大家。

《三角形分类》说课稿1

  一、本节课的内容是四年级下册第五单元里的一个内容:三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、本节课的知识目标是:

  1、会根据三角形角、边的特点给三角形进行分类。

  2、认识各种三角形。

  能力目标是:经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。

  情感目标:激发学生的主动参与意识,培养学生的合作精神。

  三、教学重点:能够按三角形角的不同和边的不同给三角形分类。

  教学难点:引导学生认识各类三角形的特征。

  四、本节课设计理念和施教措施

  为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:

  你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。

  培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。

  此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。

  为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。

  总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。

《三角形分类》说课稿2

  一、教材解读:

  1、教材的内容:人教版实验教材四年级下册第五单元第三课时

  2、教材简析:三角形分类是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。学好这部分知识为以后进一步学习三角形的有关知识打下基础。

  3、教学目标:

  (1)通过观察与操作,发现三角形中角与边的特征,学会按一定标准给三角形分类,感受三角形与日常生活的联系。

  (2)经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  4、教学重点:学会给三角形分类。

  5、教学难点:找出三角形角与边的特征。

  6、教学准备:多**课件,各种不同的三角形纸片若干袋(每袋都一样),三角板,量角器,直尺、双面胶若干

  二、教学设想

  自主学习的过程实际就是教学活动的过程。以活动促学习是本节的教学定位。通过情景创设,学生经历探索发现、讨论交流、**思考等活动,逐步建立对三角形角与边特征的认识。通过看一看、想一想、量一量、分一分、连一连、猜一猜等多种形式的学习,为学生提供更多数学对话的机会,通过教具、学具、多**的运用,让学生经历从现实空间到几何空间的抽象变化的过程,从而获得对三角形边、角特征的认识,进而学会给三角形分类。

  三、教法与学法

  教法:创设情景为自主探究搭建*台;积极引导为有效学习指明方向;主动参与为合作交流营造氛围;激励评价为主动学习鼓励加油。学法:观察分析在情景中提出问题;探索思考在操作中解决问题;分组交流在探索中理解问题;**反思在总结中内化问题。

  四、教学流程

  1、情景导入。问:你能按一定标准给教室里的人分分类吗?利用学生身边的事物,往往更能激起学生的求知欲望。同时为多角度的给三角形分类作好铺垫。

  2、探索新知。出示一些三角形纸片,问:三角形有哪些特征呢?(三个角、三条边、三个顶点)手拿实物问:每个三角形的角和边一样吗?今天我们就根据三角形各自的边和角特征来分分类。学生动手探索分3个环节,前两个环节采用比赛的形式,促使学生考虑合理分工、团结合作,提高课堂效率。

  ①观察与测量。分给每个学习一袋三角形纸片、一张彩色纸板和双面胶(每个小组的三角形一样),引导学生在小组长的带领下,进行观察、测量、记录各个三角形的特征。

  ②整理、分类。根据记录的数据,经过小组分析、讨论,将分类后的三角形贴在彩色板上。

  ③全班展示交流、师生点评。

  ④归纳小结。

  给出锐角三角形、直角三角形、钝角三角形的名称,找出不同点和相同点,出示集合图,讲解分类的不重复和不遗漏原则;给出等腰三角形、等边三角形的名称,找出它们的特征。

  3、巩固练习

  ⑴连一连。(课件出示)

  等腰三角形等边三角形锐角三角形钝角三角形直角三角形

  目的是让学生在练习中巩固各种三角形的特征,并利用这些特征给三角形分类。

  ⑵游戏,猜一猜。

  给出三角形的一个角或两个角,猜一猜可能是什么三角形?目的是让学生进一步巩固锐角三角形、直角三角形、钝角三角形的特征。深刻辨别它们之间的区别和联系。当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  ⑶判断。(课件出示)

  ①一个三角形里如果有两个锐角,必定是一个锐角三角形。()

  ②所有的等腰三角形都是锐角三角形。()

  ③所有的等边三角形都是锐角三角形。()

  目的是辩明概念。同时,要求学生用手势表示,能促使人人参与学习,达到面向全体的作用。

  ⑷填空。

  ①已知等腰三角形的两边长为4cm和5cm,则它的周长为()。

  ②已知等腰三角形的周长为17cm,其中一条边长为7cm,则它的其腰长为()。

  ③已知等腰三角形的两边长分别是4cm和8cm则它的周长为()。

  在巩固等腰三角形特征的同时又注重培养学生灵活运用所学知识解决问题的能力。

  4、全文小结:以谈收获和实际应用的方式结束。

《三角形分类》说课稿3

  我说课的内容是小学数学人教版教材第8册第135~136页,三角形的特征,三角形的分类,练习三十一的第1~3题。

  在此之前,学生已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,初步认识了三角形,直角三角形,为学生研究三角形的特征,从角的不同去把三角形进行分类做好了有力的知识支撑。三角形是最简单,也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。教材从学生说出哪些物体的面是三角形引出学习三角形的概念和三角形各部分的名称,通过实验发现三角形的稳定性。说说三角形的稳定性在生活中的运用,再从三角形的角去对三角形进行分类。结合教材,根据学生的知识现状和年龄特点,我试制定了以下教学目标:

  1、让学生理解三角形的概念,知道三角形各部分的名称,能够运用特征辨别三角形,了解三角形的特性,在生活中运用,学会从角的不同去把三角形分类。

  2、结合三角形特征的研究,培养学生的概括能力和抽象能力,在三角形的分类研究中,培养学生的观察能力、分析能力和比较能力,提高学生的探索能力。

  3、结合知识的运用,让学生感受到数学就在我们的身边,发展学生的空间思维。本课的重点是运用知识,通过观察讨论发现从三角形的角的不同对三角形进行分类。三角形的特征,并能运用特征辨别三角形。

  为了实现教学目标,我主要设计以下几个活动:

  1、找三角形:教师给学生一个装有长方形、正方形、四边形、五角星、六边形的信封,让学生在信封中找出三角形。通过这一找三角形,让学生在脑中再现三角形的表象。学生不能找出三角形,教师请学生折出一个三角形,再想一想,生活中的哪些物体的面是三角形的,交流说说。教师结合学生的回答,借助多**课件,在三角形实物中突出三角形。为三角形特征的探索作好思想准备。初步感知三角形与其他多边形的联系。

  2、观察、讨论学习三角形的特征。让学生观察**出示的三角形,想一想什么是三角形?**思考后和小组内讨论说说,教师结合学生的口答,板书画<图形>,不成功的图形、三角形。让学生逐步归纳出三角形的概念。然后让学生在纸上画一个三角形,学习三角形各部分的名称。教师出示一组图形,让学生判断哪个图形是三角形。再用三根小棒围一个三角形。通过这一活动,让学生在交流与验证中形成三角形的概念,并能根据三角形的特征画、围出三角形。让学生用三根不同长度的小棒摆三角形,让学生初步感知围成三角形的三条边的关系。运用三角形的特征判断什么样的图形是三角形。

  3、实验、感受三角形的稳定性。教师谈话出示木条做的三角形和四边形,让学生猜猜哪个图形坚固,然后请两个同学拉拉试一试,让学生感受到三角形的稳定性。教师运用**出示三角形的稳定性在生活中的运用,让学生了解三角形的稳定性在生活中的应用。教师再借助**录象,学校中有一些椅子坏了,请你修理一下,你准备怎样做?通过这一生活情境体验,让学生在实验、交流讨论中了解到三角形的稳定性及在生活中的运用。

  4、知识运用:(1)判断哪些图形是三角形。教师借助**出示一组图形,先和同桌说说再交流,说说原因。(2)判断下列三角形按角分类属于哪一类三角形。教师借助**出示图形,让学生**思考后口答交流说说为什么?(3)教师借助**创设情境:用一张纸遮住了三角形的一个角,只露出其中的一个角,首先是直角,让学生判断被遮住的是什么三角形?其次是钝角,最后是锐角,**学生进行判断,让学生判断有依据。(修桌椅)

  在本节课中,教师借助**,把生活中的物体的图形和三角形结合起来,**学生从生活中引入三角形。在课堂中通过观察交流、动手操作学习三角形的特征和分类,然后运用知识解决生活中的一些问题。让学生学习生活中的数学,在数学学习活动中学到知识,观察比较能力、分析概括能力及空间思维得到发展!

《三角形分类》说课稿4

  《小学数学课程标准》明确提出“有效地数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”在这一新的理念的指引下,我们不断地实践,不断地探索,正当我们满怀信心地投身新的教学**的洪流之时,新的困惑产生了,课堂上学生们看似积极动手,自主探索,合作学习,热热闹闹场面空前,过后却空空如也,一头雾水。这不得不引起我们新的思索,怎样才能使学生的动手实践、自主探索与合作交流真正地落到实处呢?在人教版小学数学四年级下册《三角形的分类》一课的教学中,我努力地做了这方面的尝试,尽量追求动手实践,自主探索,合作交流,猜测——验证——结论等学习方式的有效性,努力构建务实充实的有较新课堂。

  下面,我主要从四个方面介绍我的教学设想。

  一、教材简析。

  《三角形的分类》是人教版小学数学四年级下册第五单元《三角形》中的第二节内容。在此之前学生已经懂得了角的分类,能区别锐角、钝角、直角、*角与周角,而且刚刚进行了“三角形的特性”的学习。根据学生已有的知识经验和认知水*,我制定了如下的教学目标:

  1、发现和认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形。知道这些三角形的特点,并能够辨认和区别它们。

  2、通过观察、操作、合作、交流等探索活动,使学生经历认识各种三角形的过程,学习从不同角度观察、思考、分类的数学思想,感受解决问题的方法的多样性。培养学生观察能力、操作能力和形象灵活的思维能力,发展初步的空间观念。

  3、养成良好的观察、分析的习惯,培养合作意识。感受数学与生活的紧密联系。

  这样的目标既注重了知识的传授和能力的培养,更注重了学生经历知识获得的过程,学会与同伴交流,从中获取知识,体验快乐,感悟数学伴随着我们的生活。本节课的教学重点是发现和认识各类三角形的特征,并能辨认和区别它们。难点在于按边给三角形分类,理解等边三角形是一种特殊的等腰三角形,之所以称为难点,是因为它的概念系统比较复杂,已经是多级分类了。

  二、教法、学法。

  新的课程标准指出,“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”,在这一理念的指导下,我采取“引——扶——放”的教学方法,教学中我精心设计引导学生在不知不觉中回顾旧的知识,引导学生自然体验,感受分类的必要性;接着指导学生讨论出分类标准,提出具体的合作学习和动手操作的要求,学生在此基础上进行合作分类活动,这就是所谓的“扶”;最后放手让学生走入生活,更进一步了解等腰、等边三角形,再次放手让学生畅谈本节课的收获的形式来小结本节课的学习内容。进一步增强课堂数学学习活动的实效性。也体现出教师是其**者、引导者与合作者的角色。

  学生作为主体,学习中的参与状态和参与度是决定教学效果的重要因素。因此在学法上,通过“感受体验——经历操作——交流感悟”的方法,把学习的主动权交给学生,让学生在充分的自主活动中完成本节课的学习。

  三、教学流程。

  这节课为了体现学生是数学学习活动的主人,为了完成教学目标,我以学生的学为立足点,设计了如下的教学程序:

  (一)回顾展示,感受分类的必要。

  课始我以一个活动角引起学生对已有知识的回忆,如判断直角、锐角、钝角的方法,三角形有几个角,几条边等,为后面将要进行的分类打下了坚实的基础。展示学生自己制作的三角形,不仅由此使学生体会到分类的必要,感受到数学学习是有用的,同时让学生体验到成功的快乐,从而对本节课的学习产生浓厚的兴趣。

  (二)合作分类,探索图形特征。

  小学生由于受能力与经验的制约,他们的探究往往不能很好地确定重难点,容易导致探究活动热烈而缺少实效。因此教师在分类之前先引导学生对三角形的各部分进行观察、比较,探讨出分类的标准,然后对小组合作学习提出了具体详细的要求,充分体现了教师的指导与引领作用,提高了后面探究活动的实效性。

  探究按角分类的活动中,运用“角的特征分析表”使学生的探究活动目标更明确,同时又能使学生对表格的观察中发现诸如“每个三角形至少有两个锐角”“三角形中最多也只有一个钝角”……更利于学生对各类三角形的特征的认识。

  本节课的难点就是按边给三角形分类,这是学生难以理解的内容,因为它的概念系统比较复杂,已经是多级分类了。为了帮助学生突破这一难点,教师设计了“三角形边的特征分析表”,为学生探究这一难点知识搭建了踏脚石,减缓了梯度。还有一个难点,等腰三角形和等边三角形的关系,教师引导回顾正方形和长方形的关系,让学生从旧知识迁移到新知识。对等腰三角形和等边三角形角的研究采用了猜测——验证——结论的方法,体现了数学的一种思考和学习方法,学生收获的不仅仅是一个知识点,更重要的是一种数学的思想方法。

  (三)走入生活,巩固提高拓展。

  生活中的等腰三角形和等边三角形的寻找和欣赏活动,加深了学生对难点知识,按边分出的这两种特殊的三角形的特征的认识,巩固了知识,还让学生更加真切地体会到生活中处处有数学。学生畅谈收获的环节实际是个回顾、反思、梳理的过程,更有益于知识的巩固。作业中布置的搜集金字塔的知识既体现了信息时代对孩子们的基本技能的训练,又对课堂知识是一个拓展,开阔了学生的知识视野。

  四、教学理念。

  本节课中我力图体现以下理念:

  (一)动手操作,合作交流注重课堂实效。

  几何初步知识无论是点、线、面、体的特征还是图形的特征,性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。

  基于这样的考虑,教学中大量的时空都是让学生去探索、去实验、去发现。从而让学生在动手操作、积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。在这一活动中,教师尤其关注的是学习活动的实效性。给三角形分类之前,教师先引导学生仔细观察,这么多的三角形都有什么不同呢?探讨出分类的标准后,才进入小组合作阶段。操作之前,教师又提出具体详细的合作要求,“请听完要求,再开始。请你们同桌两人为一组,取出学具袋里的一号至七号三角形和表一(三角形角的特征分析表),认真分析这些三角形角的特征,填写表一,再把这些三角形分类摆放好”。课堂中诸如此类的考虑还有很多,总之,每一步的设计都要考虑是不是落到了实处,是不是起到了应有的`作用,是不是达到了该有的效果。

  (二)知识获取,问题解决渗透数学思想。

  新课程基本理念强调数学课程的发展性,也就是我们的数学教学要着眼于孩子终身的发展。课堂上我们不仅仅只是让学生获取知识,更重要的是得到一些终身受益的东西。数学的思想方法是数学知识的灵魂。在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。

  本节课的教学中,有不少这一方面的体现,如解决问题方法的多样性与优化选择问题,判断角的类型方法很多,有孩子说用量角器测量,用眼睛观察,用三角板上的直角去比等等,这些方法中,要结合实际情况灵活选取最简单快捷的方法。再例如操作活动判断三角形边、角是否相等时,可以测量,也可以对折,那么哪种方法更简单快捷呢?还有,研究等腰三角形和等边三角形角的特征的时候,我们渗透了“猜测——验证”的方法。总之,在教学中,教师既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,有助于学生的终身学习和发展。

  教学永远是一门遗憾的艺术。在这节课中还有许多的不足之处,例如:在教学中,虽然渗透了方法的优化选择,但仍有部分学生不能领会其含义,依然要选用比较费时也没有必要的方法操作,造成分类的操作活动速度太慢。学生在操作中的误差问题也是值得研究的,因为操作活动中的确存在着很接近相等但却又差那么一点点的情况,但因为时间关系,而忽略了。教师应该饱含热情,用自己激昂的情绪感染孩子们,好像黑板上的数字都会跟着教师的情绪而动,但这点教师做得还不是很让人满意。总之,这节课还是缺憾。真诚地希望得到各位专家的批评和指正!

《三角形分类》说课稿5

  一、说教材

  1.教学内容

  九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。

  2.教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

  3.教学目标

  根据教材内容及学生的知识水*和心理年龄特点,制定了以下教学目标:

  (1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

  (2)培养学生观察,操作和抽象概括能力。

  (3)激发学生的主动参与意识,自我探索意识和创新精神。

  4.教学重点、难点的确定

  根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水*和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

  5.教学准备

  三角板、多**课件、学生用表格等

  二、说教法、学法

  根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为了完成本课的教学目标,设计了以下的教学过程。

  (一)创设情景,揭示课题

  由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

  (二)动手操作,探讨三角形分类方法

  1.根据角的特点,对三角形进行分类。

  新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变**的主动性、能动性、**性不断生成、张扬、发展、提升的过程。

  我设计了如下环节:

  (1)学生先是**思考、**操作,**探索分类。(事先给每个学生准备一个学袋:一张表格)

  ①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

  ②把分类的结果填在表中。

  小组交流

  学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

  (3)展示学生**作品,学生互评。

  (4)师小结归纳(边把分类依据板书出来)

  (5)鼓励学生给自己分类的三角形取个名字。

  让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

  (6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

  (三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。

  (四)全课总结

  让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

  (五)说板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  (六)作业设计。

  目的加强巩固,能更好的掌握本课知识点。

《三角形分类》说课稿6

  一、教材分析

  1、教材的地位作用和编排意图

  本节课的教学内容是学生已认识了直角、钝角、锐角和三角形的基础上学习的,教材分了两个层次:三角形按角可分为直角三角形,钝角三角形,锐角三角形,并通过集合图来体现分类不重复、不遗漏的原则;按边的不同可分等腰三角形和其它三角形,着重引导学生认识等腰三角形,等边三角形边和角的特征。教学完分类方法后,教材还安排一些相应的练习,其意图在于培养学生的比较、抽象、概括能力,提高学生解决一些实际问题的能力,渗透集合思想,发展空间观念。学好这部分知识为以后进一步学习三角形的有关知识打下基础。

  2、教学目标

  依据课程标准,教材内容和学生已有的知识水*我制定了教学目标。

  (1)理解分类要按同一标准,会把三角形按角和边进行分类,并能解决一些简单的实际问题。感受三角形与日常生活的联系。

  (2)经历三角形按不同标准分类的过程,体验整体分类的思想方法。培养学生观察分析能力、动手操作能力和形象灵活的思维能力。

  (3)在学习过程中,沟通知识之间的联系,激发学生主动参与意识、自我探究意识和创新精神,学会合作学习。

  3、教学重、难点:

  在教学的过程中,根据教材的要求和学生实际情况,我确定的教学重点是让学生会把三角形进行分类。难点是理解等腰三角形与等边三角形的关系。

  二、教法学法

  学生对三角形已经有了初步的认识,在按三角形不同的特点分类时,为学生搭设*台,让学生在动手操作、合作与交流中,探究分类的方法。通过看一看,想一想,量一量,分一分,猜一猜等多种形式的学习,为学生提供更多“对话”的机会。借助直观教具、学具,多**的演示等**,使学生获得对三角形边、角特征的进一步认识,进而学会三角形的分类。

  三、教学过程

  围绕以上总体思路,我设计了“五个环节进行教学。

  一)谈话导入,理解分类标准。

  二)小组合作,让学生进行分类。

  三)对比分类,理解各部分关系。

  四)巩固练习,应用分类。

  五)课堂总结。

  具体教学过程如下:

  一、谈话导入,理解分类标准。

  如果要把全班同学分一下类,可以怎么分?还可以怎么分?(此环节设计:请学生按自己的标准给教室中的人分类,这样不但创设了轻松**的教学情境,同时也发散了学生的思维,渗透了分类的数学思想,为多角度地给三角形分类做好了铺垫。也对学生进行了数学学科的德育渗透。)出示六个三角形,引导学生观察:它们有什么不同?这节课我们就根据三角形的不同的特点给它们分类。(板书:三角形分类)

  二、小组合作,让学生进行分类。

  (从德育方面则注重学生个性张扬和团队合作精神的培养。通过互动,学生体验到人格尊重,主动参与的乐趣和能动性的提升,学习动机和学习兴趣受到激发。在不断的学习实践中培养自主学习的能力,促进学生整体素质全面提高。)

  为此,我安排以下教学环节。

  1、观察六个三角形,思考:如何对三角形进行分类?你准备按什么标准进行分类?(搭设*台。目的是为了鼓励学生从不同角度去观察、分析、发现不同三角形所具有的特点,为后面的分类奠定基础。也对学生进行了情感态度和个性品质的教育。)

  2、根据搭设的*台,引导学生**思考、探究分类的方法。(按边的不同,角的不同进行分类。此处培养学生**思考能力,并对学生进行德育渗透,培养学生克服困难的精神。)

  3、小组合作,探究分类。(此处通过小组合作学习,使学生受到教育:可以使学生意识到个人目标与小组目标之间是相互依赖的关系,只有在小组其他成员成功的前提下,自己才能取得成功,培养学生合作意识和创新精神。还可以从小让他们养成严肃看待他人学习成绩的好习惯。)

  4、先选取按角分类的小组汇报:你们小组是怎样分的?为什么这么分?课件出示按角分类的结论。(此环节设计让学生在数学学习中感到自己就是学习的主人,体验到成功的快乐,树立学习的信心。在教学过程中,把德育做到无痕渗透,使德育润物细无声。)

  然后整理提升如果我们把三角形看成一个大集体的话,这个集体可以分成这样的三类。(边说课件边出示集合图)

  5、解决按边如何分类。

  ①选取按边分类的小组进行汇报。在学生汇报过程中借助多**演示了解等腰、等边三角形各部分名称。并让学生说说在哪里见过?(让学生感知几何图形在我们的生活中随处可见,增强了学生对数学来源于生活的认识。加强了对学生的思想教育,感受到生活中的美。)

  ②引导学生折一折、量一量、说一说你发现了什么?思考:你会用集合圈来表示刚才我们的发现吗?(出示集合图。借助**演示,从等腰三角形的认知出发,从等腰三角形中寻找特殊,认识等边三角形,这样在探究的过程中渗透了等腰三角形和等边三角形的关系。渗透“异中求同,同中求异”的辨证思想。这是数学教学中的德育渗透点。同时突破了本课的教学难点,让学生体验到成功的喜悦。)

  三、对比分类,理解各部分关系。

  引导学生对比两种分类,说说你发现了什么?(设计这样的环节主要是学生再次经历三角形分类的过程,沟通数学知识之间内在的联系,使学生懂得一切事物都是相互联系的。渗透辨证唯物**观点的教育。)

  四、巩固练习,应用分类。

  1、游戏:猜一猜,躲在木板后面的会是什么三角形呢?课件出示(采用游戏的练习方式,不仅增加了题目的趣味性,使学生体验成功的快乐,增强了他们的自信心,使他们受到思想教育。同时又进一步巩固了三角形的特征。)

  2、辨一辨下列说法正确吗?(用手势表示)(要求学生用手势表达,目的是教育学生辨明概念,促使人人参与学习,达到面向全体的目的。)

  3、送三角形回家。(课件出示。在掌握基础知识的前提下进行拓展练习,可以深化教学内容,培养思维的灵活性。同时使学生感受到学数学,用数学的快乐,使数学课堂中的德育无处不在。)

  4、动手实践。在点子图上画一个你喜欢的三角形。(四个习题的设计由浅入深,把知识巩固和游戏有机结合起来,让学生既巩固了知识,又产生了进一步学习的兴趣和愿望。培养了学生学数学、用数学的意识。)

  第五环节:课堂总结

  今天这节课同学们通过动手操作、小组合作,共同研究了三角形的分类,谁来说说你是怎样给三角形分类的?(通过学生自主总结梳理知识,充分发挥学生学习的主体作用。本节课处处蕴藏着德育教育素材,备课中我认真挖掘,悉心引导,适时地对学生进行德育渗透,使每一位学生在学数学的过程中获得相应的德育知识。)

《三角形分类》说课稿7

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学教科书(北师大版)四年级下册第27页至29页的内容及相关练习题。

  2、教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。

  3、教学目标

  根据教材的内容及学生的知识现状和年龄心理特点,我制定了以下教学目标。

  ①学生通过观察、操作、比较、发现三角形角和边的特征,会给三角形分类,理解并掌握各种三角形的特征。

  ②培养学生观察能力,操作能力和抽象概括能力。

  ③激发学生的主动参与意识,自我探索意识和创新精神。

  4、教学重、难点的确定

  依据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能按角和边的特征给三角形分类,因此这是教学重点。

  根据学生的认知水*和年龄特征,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃,因而我认为“三角形分类”的教学难点是学生能理解并掌握各种三角形的特征。

  5、教学准备

  多媒课件、彩色卡纸、三角形*面图 、固体胶、剪刀等。

  二、说教法、学法

  根据新课程教材特点和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、分组讨论等多种方法,采用现代化教学**结合教材,让学生在“想一想”“做一做”“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力、语言表达能力和自学能力。

  在教学中,首先把握新旧知识的衔接点,由三角形的认识,引出课题“三角形分类”。接着引导学生自学课本,放手让学生动手操作,小组讨论交流,寻找三角形分类的方法。最后让学生各抒己见,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为达到本课的教学目标,我设计了以下教学过程。

  教学环节 教学流程 设计意图

  复习铺垫

  1、师:同学们,你们说说以前学过哪些图形?三角形是什么样的?谁想上黑板画给大家看一看?

  2、师:从同学们画的三角形中我们可以看出三角形可能存在这三个角。(课件出示)

  ①叫角。

  ②三角形有三个特点,(课件出示)

  有边,角,顶点。

  让学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打下基础。

  揭示课题

  在三角形这个大家族里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们根据三角形角和边的特点给它们分类,好不好?

  (板书:三角形分类) 揭示课题的同时让学生明确了新课的学习任务,使学生学有目标,克服了盲目性。

  探究新知

  动手操作,探讨三角形分类方法

  小组讨论,动手操作。给每小组学生分一张彩色卡纸,让学生把附页上的三角形剪出进行分类,分类的结果贴在彩色卡纸上,让学生选**展示他们的劳动成果,并说说他们是用什么方法进行分类,然后:

  ①学生**自评作品

  ②学生互评

  ③老师点评 通过小组讨论、交流、探索出三角形分类方法这一话动中,不仅激发学生的学习兴趣,而且真正让学生动眼、动手、动口、动脑参与获取知识的过程,感受到了成功的喜悦。学生的自评、互评、老师的点评体现了课程标准中评价方法的多样化。

  教学环节

  教学流程 设计意图

  探究新知

  按角分类的三角形

  按照教材顺序依次展示第一类锐角三角形,第二类直角三形,第三类钝角三角,并出示相应的课件引导学生归纳、概括出这三种三角形的特征。

  锐角三角形 直角三角形

  三个角都是锐角 有一个角是直角

  钝角三角形

  有一个角是钝角

  在学生动手操作充分感知的基础上,教师点拨,引导学生归纳出按角分类的三角形特征。培养学生分析问题和解决问题的能力,同时也突破了难点。

  探究新知 按边分类的三角形

  1、等腰三角形的引入

  展示学生以边分类的彩色卡纸。问:学们有什么新发现?课件出示:

  引导学生归纳出等腰三角形的特征。 通过学生观察、讨论 、探究出等腰三角形的特征,培养了学生的探究精神。

  2、等边三角形的教学

  问:同学们再仔细观察等腰三角形都只是两条边相等吗?看不出可以拿尺子量一量。

  学生归纳:(课件展示)

  三条边都相等的三角形叫做等边三角形。 通过让学生认真观察等腰三角形,并大胆猜想,动手测量探索、实践。使学生的主体性得以更大程度上的发挥,动手能力、思维能力和创新能力得到较大的发展。

  巩固运用 深化理解

  1、教材28页上的第一道练习题,请个别学生到视频展台做此题,

  2、游戏巩固

  老师左手拿一个三角形,右手拿一张卡纸遮住三角形的两个角,只露出一个角,让学生猜这会是什么样的三角形? 设计第一道练习题目的在于巩固新知,形成技能,培养学生联系新知识,灵活解决问题的能力。

  当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用学生喜闻乐见的游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  全课小结

  大家谈收获

  通过今天这节课的学习,

  你有什么收获。

  让学生谈谈经过自己动手操作、小组合作、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生 的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。

  四、说板书设计

  本节课的板书为了突出学生的主体地位,突出学习重点,解决知识难点,整个黑板主要用于展示学生按角和边进行三角形分类的彩色卡纸作品。这样安排既便于学生观察,又有利于激发学生的学习积极性。

《三角形分类》说课稿8

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学教科书(北师大版)四年级下册第24至25页的内容及相关练习题。

  2、教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

  3、教学目标

  根据教材内容及学生的知识水*和心理年龄特点,制定了以下教学目标:

  (1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

  (2)培养学生观察,操作和抽象概括能力。

  (3)激发学生的主动参与意识,自我探索意识和创新精神。

  4、教学重点、难点的确定

  根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能近角和边的特点给三角形分类,因此这是教学重点。

  根据学生的认识水*和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。

  因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

  5、教学准备

  除了准备彩色卡纸,三角形*面图等,课前布置学生把课本P113图2的三角形剪下来。

  二、说教法、学法

  根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“分一分”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。

  在教学中,首先把握新旧知识的衔接点,利用教材12个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为了完成本课的教学目标,设计了以下的教学过程。

  (一)创设情景,揭示课题

  1、出示图案(采用直观教具吸引学生的***)

  这个图案像什么?由什么图形拼成的?

  2、考考你的眼力,这几个三角形的形状一样吗?什么不一样?(让学生具体说一说)

  在三角形这个大兵营里,它们的角和边各有特点。这节课我们就根据三角形角和边的特点给它们分类。板书课题:三角形的分类

  由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

  (二)动手操作,探讨三角形分类方法

  1、根据角的特点,对三角形进行分类。

  新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变**的主动性、能动性、**性不断生成、张扬、发展、提升的过程。

  我设计了如下环节:

  (1)学生先是**思考、**操作,**探索分类。(事先给每个学生准备一个学袋:一张表格和一张彩色卡纸)

  ①学生根据表格对这12个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

  ②把分类的结果贴在彩色卡纸上。

  ①②③④⑤⑥⑦⑧⑨⑩1112

  锐角个数

  直角个数

  钝角个数

  (2)小组交流

  学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

  (3)展示学生**作品,学生互评。

  (4)师小结归纳(边把分类依据板书出来)

  (5)鼓励学生给自己分类的三角形取个名字。

  让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

  (6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

  2、游戏巩固

  利用教材第25页猜猜来个教学游戏:

  猜出被信封遮住的可能是什么三角形,答对者,就把里面的三角形送给他。

  通过数学游戏,可以激发学生学习兴趣,还可以巩固新知、形成技能。并对直角三角形、锐角三角形、钝角三角形的相同点、不同点有了进一步的了解。

  3、指导学生根据边的特点,对三角形进行分类。

  由于让学生观察的三角形个数较多,要逐个测量边的长度再进行比较,总结归纳比较费时。所以这一环节安排以小组为单位,利用老师发放的学袋,由小组长来安排分工测量,填好研究报告单,然后一起观察,一起讨论,一起分类。师再依据小组**发言后引导归纳,从而引出不等边三角形和等腰三角形,等边三角形。

  (三)小小辩论会

  为了帮助学生理解“等边三角形也是等腰三角形”设计了这么一个环节。

  由正、反两方充分阐述自己的观点,师再适时点拨,让学生在热烈的学习氛围中,巩固所学知识并更上一台阶。

  (四)全课总结

  今天你学得开心吗?什么事让你开心?让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

  四、说板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  板书设计:

  三角形分类

  (学生三个锐角锐角三角形(学生三边不相等不等边三角形作品一个直角直角三角形作品两边相等等腰三角形展示)一个钝角钝角三角形展示)三边相等(等边三角形也是等腰三角形)

《三角形分类》说课稿9

  一、本节课的内容是四年级下册第五单元里的一个内容:

  三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、本节课的

  知识目标:

  1、会根据三角形角、边的特点给三角形进行分类。

  2、认识各种三角形。

  能力目标:

  经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。

  情感目标:

  激发学生的主动参与意识,培养学生的合作精神。

  三、教学重点:能够按三角形角的不同和边的不同给三角形分类。

  教学难点:引导学生认识各类三角形的特征。

  四、本节课设计理念和施教措施

  为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:

  你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。

  培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。

  此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。

  为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。

  总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。

《三角形分类》说课稿10

  一、教材分析:

  “三角形分类”是人教版四年级下册第五单元第2节内容的第1课时,是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、教学目标:

  知识与技能:通过观察与操作,会按角与边的特征给三角形分类

  过程与方法:经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  情感态度:激发学生的主动参与意识、自主探索意识。

  三、教学重点:学会给三角形分类。难点:会按角与边的特征分

  四、学情分析:三角形学生早已接触,已经认识了直角、钝角、锐角以及三角形,在日常生活中也有丰富感知。

  五、教法与学法

  教法:创设情景、积极引导、主动参与、激励评价

  学法:观察分析、探索思考、分组交流、**反思。

  六、教学流程

  一、创设情境、激趣导入

  同学们,我们已经认识了三角形,谁来说一说?有三位老朋友已经恭候我们多时了,看看它们是谁?课件出示三个角,指名回答。你能说说什么样的角是锐角、直角、钝角吗?学生一一作答。我想知道这个角是不是锐角该怎么办?(用量角器或三角板)

  导入课题,课件出示由三角形拼成的小船,(每组一份)老师给大家带来了一件礼物,看看它像什么?它是由什么图形拼成的?这些三角形的形状都一样吗?这节课我们就一起给三角形分分类,板书课题。

  二、自主探索、合作交流

  三角形有角和边,我们学过角的分类,那三角形又可以按照什么来分呢?(按角分、边分)教师板书:角、边

  (一)按角分1、学生尝试分类,小组交流后集体汇报

  把三个角都是锐角的分一起板书:三个锐角

  把都有一个直角的分一起板书:一个直角

  把都有一个钝角的分一起板书:一个钝角

  分别起名字,指名回答。(板书:锐、直、钝角、三角形)

  仔细观察这三类三角形有什么异同?(同:至少都有2个锐角。异:另外一个角分别是锐角、直角、钝角)

  每类三角形中最大的角跟它的名称有什么关系?引导发现(最大角是什么角,它就是什么三角形)

  2、用集合图表示

  如果把三角形比作一个大家庭,按角分,这个大家庭里有几个小家庭?是哪几个?指名回答,教师用课件出示集合图。

  3小游戏—猜猜它是什么三角形(要看最大角不能单凭一个锐角)

  (二)按边分

  1教师提出要求,学生小组交流后汇报。

  三条边都不相等(板书:三边不等)有两条边相等(板书:两边相等)三条边都相等(板书:三边相等)

  试着起名字,教师点拨并适时板书:不等边、等腰、等边三角形。

  2、明确等边三角形是特殊的等腰三角形。

  **:等边三角形是等腰三角形吗?学生展开讨论,引导学生明确:只有有两边相等就是等腰三角形。(板书:特殊)

  3、用集合图表示

  4、等腰三角形和等边三角形除了边的特点外,看看它们的角有什么特点?想办法验证一下。(量角器或对折)

  3、认识等腰三角形和等边三角形。

  腰、底角、顶角。等边三角形又叫正三角形,每个角都是60度三、巩固练习、反馈提升

  1、判断、在钉子板上为三角形、完成做一做**进洞

  2、小组合作猜猜我是谁?只露一个角,可能是什么?为什么?

  四、课堂总结、检测效果。

《三角形分类》说课稿11

  一、说教材

  【教学内容】

  小学数学四年级下册

  【学习目标】

  1、通过实际操作对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形特点,分辨各类三角形。

  2、在活动中渗透分类及集合的数学思想,培养学生的归纳概括能力。

  3、在操作、思考中培养学生的动手能力,逐步发展学生的空间观念。

  4、教学重点、难点

  教学重点:认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

  教学难点:学生理解并掌握各种三角形的特征;

  【教学准备】

  CAI课件、不同类型的三角形、正方形纸。

  二、说教法、学法

  教法:以直观教学为主,运用观察动手操作,小组讨论等多种方法;

  学法:放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  (一)创设情境,激趣导入。

  分类是区分不同事物,发现事物本质特征的重要**。用生活中常见的图形来激发学生学习兴趣,抽象出的三角形展现在学生面前,学生看到的是一堆杂乱的三角形,会感觉太乱,从而感到有分类的必要,激发学生的探究欲望。

  (二)自主探究,创建数学模型

  A、动手操作,合作分类

  鼓励学生自主探究,然后放手让学生通过、合作探究来探索、体会、理解各类三角形的特点。这三点提示指向性强,为学生自主探索指明方向。方向明确,目标就完成一半了。

  B、全班讨论、汇报交流

  学生在经历了自主学习、合作探索之后,进行汇报的这一过程,让学生充分表达自己的想法,同学之间相互补充,教师只起到点拨指导作用,让学生在思维碰撞中提高认知能力。

  1、猜角游戏

  借助数量有限的材料得到按角分的三类三角形,这是一种不完全归纳法,它考察的对象是有限的。因此,这个猜角游戏中,我借助几个形象直观的三角形,通过几个有趣且有挑战性的猜测,使学生在观察、想象的过程中,围绕这些内角进行反复思考,并且通过演示、讨论、交流等形式,认识到结果的必然性。使知识的难点在轻松愉快的氛围中被“破解”,其功效犹如武术中的“四两拨千斤”。

  2、联系生活实际

  按边分的三角形,其实可以让学生始终从整体上认识三角形,即渗透等腰三角形是从一般三角形中变化而来的,而等边三角形也是从等腰三角形变化而来的,通过我演示突破了等边三角形是特殊的等腰三角形这一大难点。

  (四)全课小结

  三个开放式的总结方式,有助于学生梳理在本课学习中探索到的知识,学生可以根据自己的实际情况,选择适合自己的表达方式与同学交流,反思自己的学习行为和学习效果,从而明确今后的努力方向。

  (五)巩固运用 深化理解

  1、课件出示的填一填练习题,请个别学生到视频展台做此题。

  2、课件出示的判断题,请个别学生回答此题。

  (六)板书设计

  本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

  本节课教学有以下特点:

  1.教师在课堂教学中注意为学生提供充分的时间和空间鼓励学生观察、操作、思考、质疑、验证、交流,使学生在活动中体验和感受各类三角形的本质特征。

  2.注重数学思想的渗透和学习方法的指导,注意了师生间、生生间的互动。

  3.教师充分利用教材中提供的素材挖掘教学资源,根据本班学生的具体情况,灵活安排教学活动,没有按教材的思路进行教学,教材是把本教学内容分成了两部分,首先通过分类认识什么是锐角三角形,什么是钝角三角形,什么是直角三角形,然后再通过后面的学习使学生认识等边三角形和等腰三角形。本节课没有按这样的思路进行,而是将这两个内容合在一起,这样一来使学生的活动空间更大,学生思考的空间更大,这样做也有利于调动学生学习的积极性,同时更有利于学生思维的发展和学生空间观念的形成。


《等腰三角形》获奖说课稿 (菁选3篇)(扩展10)

——《相似三角形》说课稿菁选

《相似三角形》说课稿范文

  在教学工作者实际的教学活动中,就不得不需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。优秀的说课稿都具备一些什么特点呢?下面是小编收集整理的《相似三角形》说课稿范文,欢迎阅读,希望大家能够喜欢。

《相似三角形》说课稿范文1

  各位**老师大家好:今天我说课的课题是华师版初中三年级数学 “相似三角形的性质”。

  下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分析”、“ 学生的认知起点分析”“教学目标、教学重点和难点”“学法指导”、“教学过程的设计”和“评价分析”加以说明。

  一、教材分析。

  教材的地位及作用:对于相似三角形的研究,实际上是对*面几何中两个封闭图形关系研究的进一步,相似三角形的性质”是初中数学“相似形”中的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,这些性质是解决有关实际问题的重要依据,因此必须熟练掌握三角形相似的性质,学会灵活运用相似三角形的性质,在学习数学中起着承上启下的作用。

  二、学生的认知起点分析:

  学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的这为探究三角形相似的性质,做好了知识上的准备。另外,学生也具备了识别三角形全等的知识,通过类比,使学生能主动参与本节课的操作、探究。

  三、教学目标:

  根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为:

  (1)知识目标:使学生掌握相似三角形的性质定理及其证明方法,能运用相似三角形性质定理解决问题。

  (2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践能力。

  (3)德育目标:通过全等三角形和相似三角形的类比学习,树立学生从特殊到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。

  四、教学重、难点:

  因为相似三角形的性质是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,根据教学目标我设置了本节的

  1、重点:相似三角形的性质及其应用。

  2、难点:相似三角形性质的探索过程。

  五、教学方法与教学**的选择。

  为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使课堂教学生动、有趣、高效,本节课我将采用自主探索、启发引导、。合作交流、反馈测试展开教学,并采用计算机辅助课堂教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维,这样一方面可以激发学生学习的兴趣,提高学生学习的效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学习体会。

  六、学法指导。

  在学法指导上,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决问题的过程中,深化对其本质属性的理解,培养学生学习的主动性和积极性,让学生在愉悦的气氛中感受到数学学习的无穷乐趣。

  七、设计思想。

  在本节课设计中,从分发挥了教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作探究讨论中来,使学生在与他人的合作交流中,获取新知,并是个性思维得到发展。

  在本节的学习中,采用探究的形式,引导学生通过操作、观察、探索、交流、发现,得出相似三角形对应角相等,对应边成比例外 ,对应边上的高线、对应边上的中线、对应边上的角*分线也是成比例的,都等于相似比,通过进一步探讨还得出相似三角形周长的比等于相似比,面积的比等于相似比的*方,同时对得到的知识加以运用,配备了巩固练习,让学生做到活学活用,并适时与学生沟通,营造亲切、**、活跃的课堂气氛,以激发学生积极思维,促进认知发展。

  八、教学程序。

  1、 明确目标,重点、难点,为学生指明方向避免盲目性。

  2。知识链接 目的在于引导学生用类比思想学习新知。

  3、 启发诱导 探索新知 培养学生自主学习与合作学习。

  4、巩固练习 检验学生对所学知知识掌握情况。

  5、归纳小结 知识的再现 梳理知识。

  6、作业布置:进一步巩固所学知识。

  九、评价分析。

  今天这节课主要是对数学学科“学案导学”这种新知教学模式进行一次尝试,也是对从细节入手,打造优质高效数学课堂的主题进行了一次探索,通过这节课的教学,我的收获也很多,这为我们以后的课堂教学积累经验。我认为这节课比较理想的方面有:

  1、教学方法和教学**的选择比较恰当合理。

  选择恰当的教学手法和教学**是高效课堂的重要保障,在探究上主要是采用合作交流的形式,因为学生提前有预习,也是检验学生预习的情况,把预习情况在小组汇报,充分调动学生的积极性,使学生变被动为主动学习,使课堂教学生动、有趣、高效。在交流中达成共识。然后以小组汇报形式展示,检验学生对一个探究问题的掌握情况,收到良好效果。探究二以个人展示为主。

  分别找不同层次的学生叙述证明过程,探究一作为基础,所以探究二的推理过程就很容易;探究三采用的方法是先自主思考,然后再小组中研讨,学生板演的形式来完成。因为探究三学生在自主思考中,我通过学生的反应和表情发现一部分学生有障碍,所以我及时安排了这次探究。三个探究题采用了不同的方法和形式,体现了探究方法的多元化,同时采用计算机辅助教学,激励学生积极参与、观察。发现只是的内在联系,使每个学生都能积极思维,激发学生学习兴趣,提高学生的学习效率,拓展学生思维空间,培养学生用创造性思维去学习。

  2、教学目标基本得到落实。

  一节课的中心工作就是要落实好教学目标,课前的准备和课堂的各个环节都是为落实目标来服务的,通过本节的'教学可以看出学生对相似三角形对应高的比,对应中线的比,对应角*分线的比。周长的比等于相似比,面积的比等于相似比*方,这几条性质掌握比较好,在探索这几条性质的过程中,学生经历观察、猜想、验证的过程,感到了新知的产生过程,这为掌握新知奠定了基础,通过巩固训练,也可以反应学生对本节课所学知识基本掌握。

  3、抓住重点,突破难点。

  本节课的重点是相似三角形的性质及其应用,在课堂上紧紧抓住重点层层展开教学,通过观察猜想,测量验证和推理论证得出相似三角形的性质,符合学生的认知规律让所有学生都动起来,参与进来。差生不再是旁观者。使学生能积极主动去探索新知和获取新知。通过复习中的第一个和第四个,学生就有了思想准备。本节课研究的问题与全等三角形的性质类似。全等与相似明显区别就是全等对应边相等,相似对应成比例,学生在探究的几个问题上就类比全等的性质去研究,降低了问题的难度,进而突破难点。

  4、分层教学,体现比较明显。

  分层教学时我校的一个教学特色,学生两极分化严重,既得让尖子生吃得饱,又得让差生吃得好,所以我把班级学生分成6个小组,每个小组由一名组长,组长为1号,其他成员是按数学成绩的高低编号2——7号,本节课的复习几个问题是各组的5,6,7号同学展示,这是以前所学的基础知识,是他们应该掌握的内容,通过展示,基本掌握探究1是各组**展示,探究2是各组3、4号同学展示,探究3是各组的2号同学展示。习题最后一题是1号同学展示,在研究过程中,组长**一一汇报自己的想法,小组中评价达成共识。作业设置有必做题、选做题、备选题也是针对不同层次的学生来设置的,也充分体现了新的课程标准人人获得不同的提高。

  5、合作学习效果明显。

  学生在合作学习中表现非常优秀,讨论气氛浓厚,每个个体都积极主动参与进来,在小组中展示自己想法,个别小组的研究还有一定的深度和广度,通过展示可以发现研讨具有实效性。

  6、学生活动比较好。

  我觉得在这节课当中,学生参与活动的人数比较多,活动的次数比较多,比如举手回答问题比较积极,本节课安排了3次典型的学生活动,小组活动参与意识比较强烈。

  在整个教学过程中,教师主要是发挥了主导作用,适时点拨、引导,把时间交给了学生,大胆放手让学生去做,尽可能调动学生的积极性,让学生主动参与到合作探究中来,使学生在与他人合作交流中获得新知,个性思维得到发展。时时与学生沟通,营造亲切、**、活跃的课堂气氛,激发学生积极思维,促进认知发展。

  我认为本节课的不足之处:

  1、在每个探究结束后,只是口头总结,应该做几张幻灯片,显示在大屏幕上,这样效果会更好。

  2、通过课堂实践,我认为学生小组人员过多,不宜全面交流,会影响学习效果。

  3、课堂上有几个生成问题。第一个是在证明相似三角形比等于相似比*方时,我随机留了一名同学讲解,讲得很好,第二个是没想到在练习3题中,学生能提出各种解法。第5题上没想到有同学提出了另一种解法,这样就冲击了我后面的小结中预设时间,本来想找几个同学说,我还有个总结,后面时间有点紧。

  4、由于紧张原因,在放映幻灯片中有几处错误,如讲完性质时总结,本来应由学生总结,但我一放时都放了出来。

《相似三角形》说课稿范文2

  一、教材分析

  (一)教材的地位和作用

  相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。

  本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。

(二)教学的目标和要求

  1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。

  2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。

  3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。

  (三)教学的重点和难点

  1.重点:相似三角形和相似比约概念及判定三角形相似的预备定理。

  2.难点:相似三角形约定义和判定三角形相似的预备定理。

  二、教法与学法

  采用直观、类比的方法,以多****辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。

  三、教学过程的分析

  看我国**,**上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。

  1.关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再格中位线所在约直线上下*移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为△ABC,原三角形记为△A'B'C'。因此,如果有:

  ∠A=∠A',∠B=∠B',∠C=∠C',

  那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。

  2.关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:

  如果两个三角形相似,那么它们的.对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。

  3.关于相似比的概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比(或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。

  4.在教学预备定理前,可先复**节课学习的P215页例6的结论[*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出*行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥ BC,则△ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:

  当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。

  因此我们可得(预备)定理:

  定理*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课本P224页练习1、2做为课堂练习,之后进行**与调板,了解学生掌握知识的情况。

  最后小结本节课的知识要点及注意点。小结之后布置作业和预习。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除