鸽巢问题优秀教学设计 (菁选3篇)

鸽巢问题优秀教学设计1

  鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

  学情分析:

  “鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

  设计理念:

  在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

  教学目标:

  1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

  2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

  3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

  教学重点:理解鸽巢原理,掌握先“*均分”,再调整的方法。

  教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

  教学准备:多**课件、微视频、合作探究作业纸。

  教学过程:

  一、谈话引入:

  1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。你们信吗?

  2、验证:学生报出生月份。

  根据所报的月份,统计13人中生日在同一个月的学生人数。

  适时引导:“至少2个同学”是什么意思?(也就是2人或2人以上,反过来,生日在同一个月的可能有2人,可能3人、4人、5人……,也可以用一句话概括就是“至少有2人”)

  3、设疑:你们想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。下面我们就来研究这类问题,我们先从简单的情况入手研究。

  二、合作探究

  (一)初步感知

  1、出示题目:有3支铅笔,2个笔筒(把实物摆放在讲桌上),把3支铅笔放进2个笔筒,怎么放?有几种不同的放法?谁愿意上来试一试。

  2、学生**实物演示。

  可能有两种情况:一个放3支,另一个不放;一个放2支,另一个放1支。

  教师根据学生回答在黑板上画图和数的分解两种方法表示两种结果。(3,0)、(2、1)

  3、提出问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话说得对吗?

  学生尝试回答,师引导:这句话里“总有一个笔筒”是什么意思?(一定有,不确定是哪个笔筒,最多的笔筒)。这句话里“至少有2支”是什么意思?(最少有2支,不少于2支,包括2支及2支以上)

  4、得到结论:从刚才的实验中,我们可以看到3支铅笔放进2个笔筒,总有一个笔筒至少放进2支笔。

  (二)列举法

  过渡:如果现在有4支铅笔放进3个笔筒,还会出现这样的结论吗?

  1、小组合作:

  (1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;

  (2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;

  (3)我们发现:总有一个笔筒至少放进了()支铅笔。

  2、学生汇报,展台展示。

  交流后明确:

  (1)四种情况:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

  (2)每种摆法中最多的一个笔筒放进了:4支、3支、2支。

  (3)总有一个笔筒至少放进了2支铅笔。

  3、小结:刚才我们通过“画图”、“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“列举法”,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找到“至少数”呢?

  (三)假设法

  1、学生尝试回答。(如果有困难,也可以直接投影书中有关“假设法”的截图)

  2、学生操作演示,教师图示。

  3、语言描述:把4支铅笔*均放在3个笔筒里,每个笔筒放1支,余下的1支,无论放在哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进了2支笔。(指名说,互相说)

  4、引导发现:

  (1)这种分法的实质就是先怎么分的?(*均分)

  (2)为什么要一开始就*均分?(均匀地分,使每个笔筒的笔尽可能少一点,方便找到“至少数”),余下的1支,怎么放?(放进哪个笔筒都行)

  (3)怎样用算式表示这种方法?(4÷3=1支……1支1+1=2支)算式中的两个“1”是什么意思?

  5、引伸拓展:

  (1)5支笔放进4个笔筒,总有一个笔筒至少放进()支笔。

  (2)26支笔放进25个笔筒,总有一个笔筒至少放进()支笔。

  (3)100支笔放进99个笔筒,总有一个笔筒至少放进()支笔。

  学生列出算式,依据算式说理。

  6、发现规律:刚才的这种方法就是“假设法”,它里面就蕴含了“*均分”,我们用有余数的除法算式把*均分的过程简明的表示出来了,现在会用简便方法求“至少数”吗?

  (四)建立模型

  1、出示题目:5支笔放进3支笔筒,5÷3=1支……2支

  学生可能有两种意见:总有一个笔筒里至少有2支,至少3支。

  针对两种结果,各自说说自己的想法。

  2、小组讨论,突破难点:至少2只还是3只?

  3、学生说理,边摆边说:先*均分每个笔筒放进1支笔,余下2只再*均分放进2个不同的笔筒里,所以至少2只。(指名说,互相说)

  4、质疑:为什么第二次*均分?(保证“至少”)

  5、强化:如果把笔和笔筒的数量进一步增加呢?

  (1)10支笔放进7个笔筒,至少几支放进同一个笔筒?

  10÷7=1(支)…3(支)1+1=2(支)

  (2)14支笔放进4个笔筒,至少几支放进同一个笔筒?

  14÷4=3(支)…2(支)3+1=4(支)

  (3)23支笔放进4个笔筒,至少几支放进同一个笔筒?

  23÷4=5(支)…3(支)5+1=6(支)

  6、对比算式,发现规律:先*均分,再用所得的“商+1”

  7、强调:和余数有没有关系?

  学生交流,明确:与余数无关,不管余多少,都要再*均分,所以就是加1.

  8、引申拓展:刚才我们研究了笔放入笔筒的问题,那如果换成鸽子飞进鸽笼你会解答吗?把苹果放入抽屉,把书放入书架,高速路口同时有4辆车通过3个收费口……,类似的问题我们都可以用这种方法解答。

  三、鸽巢原理的由来

  微视频:同学们从数学的角度分析了这些事情,同时根据数据特征,发现了这些规律。你们发现的这个规律和一位数学家发现的规律一模一样,只不过他是在150多年前发现的,你们知道他是谁吗?——德国数学家?“狄里克雷”,后人们为了纪念他从这么*凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,由于人们对鸽子飞回鸽巢这个引起思考的故事记忆犹新,所以人们又把这个原理叫做“鸽巢原理”,它还有另外一个名字叫“抽屉原理”。

  四、解决问题

  1、老师上课时提出的生日问题,现在你能解释吗?

  2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  3、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

  4、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

  5、把15本书放进4个抽屉中,不管怎么放,总有一个抽屉至少有4本书,为什么?

鸽巢问题优秀教学设计2

  教学目标:

  1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

  2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

  3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

  教学重点:

  经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:

  理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学过程:

  一、创设情境、导入新课

  1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

  2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

  二、合作探究、发现规律

  师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

  1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (1)理解“总有”、“至少”的含义。(PPT)总有:一定有至少:最少

  师:这个结论正确吗?我们要动手来验证一下。

  (2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

  探究之前,老师有几个要求。(一生读要求)

  (3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

  第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)

  第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

  师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

  师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

  (4)通过比较,引出“假设法”

  同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?

  引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

  (5)初步建模—*均分

  师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

  生:*均分(师板书)

  师:为什么要去*均分呢?*均分有什么好处?

  生:*均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不*均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

  师:这种先*均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

  板书:4÷3=1……11+1=2

  (5)概括鸽巢问题的一般规律

  师:现在我们把题目改一改,结果会怎样呢?

  PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

  师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

  通过这些问题,你有什么发现?

  交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

  过渡语:师:如果多出来的数量不是1,结果会怎样呢?

  2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

  (1)同桌讨论交流、指名汇报。

  先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?

  再让一生说出5÷3=1……21+1=2

  师:你们同意哪种想法?

  (2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次*均分?

  (3)明确:再次*均分,才能保证“至少”的情况。

  3、教学例2

  (1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

  (2)**思考后指名汇报。

  师板书:7÷3=2……12+1=3

  (3)如果有8本书会怎样?10本书呢?

  指名回答,师相机板书:8÷3=2……22+1=3

  师:剩下的2本怎么放才更符合“至少”的要求?

  为什么不能用商+2?

  10÷3=3……13+1=4

  (4)观察发现、总结规律

  同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是*均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

  归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)

  三、巩固应用

  师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

  1、做一做第1、2题。

  2、用抽屉原理解释“扑克表演”。

  说清楚把4种花色看作抽屉,5张牌看作要放进的书。

  四、全课小结通过这节课的`学习,你有什么收获或感想?

鸽巢问题优秀教学设计3

  一、教学内容:

  教科书第68页例1。

  二、教学目标:

  (一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过**思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  三、教学重难点:

  教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

  教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  四、教学准备:

  多**课件。

  五、教学过程:

  (一)候课阅读分享:

  同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

  (二)激情导课

  好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

  (三)**导学

  1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

  请你再把题读一次,这是为什么呢?

  要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

  对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

  那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

  课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

  方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

  刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

  那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

  方法二:用“假设法”证明。

  对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(*均分)

  方法三:列式计算

  你能用算式表示这个方法吗?

  学生列出式子并说一说算式中商与余数各表示什么意思?

  2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

  这道题大家可以用几种方法解答呢?

  3种,枚举法、假设法、列式计算。

  3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

  还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

  4、表格中通过整理,总结规律

  你发现了什么规律?

  当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

  5、简单了解鸽巢问题的由来。

  经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

  (四)检测导结

  好,我们做几道题检测一下你们的学习效果。

  1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?

  (五)全课总结今天你有什么收获呢?

  (六)布置作业

  作业:两导两练第70页、71页实践应用1、4题。


鸽巢问题优秀教学设计 (菁选3篇)扩展阅读


鸽巢问题优秀教学设计 (菁选3篇)(扩展1)

——《鸽巢问题》优秀的教学设计3篇

《鸽巢问题》优秀的教学设计1

  一、教学内容:

  教科书第68页例1。

  二、教学目标:

  (一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过**思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  三、教学重难点

  教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

  教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  四、教学准备:多**课件。

  五、教学过程

  (一)候课阅读分享:

  同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与

大家分享一下。

  (二)激情导课

  好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们

来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

  (三)**导学

  1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

  请你再把题读一次,这是为什么呢?

  要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

  对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

  那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

  课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长

整理出的大家的各种摆法,我们一

起来看一看吧!

  方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

  刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

  那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

  方法二:用“假设法”证明。

  对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(*均分)

  方法三:列式计算

  你能用算式表示这个方法吗?

  学生列出式子并说一说算式中商与余数各表示什么意思?

  2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

  这道题大家可以用几种方法解答呢?

  3种,枚举法、假设法、列式计算。

  3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

  还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

  4、表格中通过

整理,

总结规律

  你发现了什么规律?

  当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

  5、简单了解鸽巢问题的由来。

  经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

  (四)检测导结

  好,我们做几道题检测一下你们的学习效果。

  1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  4、育新小学全校共有2192名学生,其中一年级新生有367名同学是

2008年出生的,这个学校一年级学生

2008年出生的同学中,至少有几个人出生在同一天?

  (五)全课

总结今天你有什么收获呢?

  (六)布置作业

  作业:两导两练第70页、71页实践应用1、4题。

《鸽巢问题》优秀的教学设计2

  教学目标:

  1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

  2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

  3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

  教学重点:

  经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:

  理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学过程:

  一、创设情境、导入新课

  1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

  2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

  二、合作探究、发现规律

  师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

  1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (1)理解“总有”、“至少”的含义。(PPT)总有:一定有 至少:最少

  师:这个结论正确吗?我们要动手来验证一下。

  (2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

  探究之前,老师有几个要求。(一生读要求)

  (3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

  第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)

  第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

  师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

  师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

  (4)通过比较,引出“假设法”

  同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?

  引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

  (5)初步建模—*均分

  师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

  生:*均分(师板书)

  师:为什么要去*均分呢?*均分有什么好处?

  生:*均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不*均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

  师:这种先*均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

  板书:4÷3=1……1 1+1=2

  (5)概括鸽巢问题的一般规律

  师:现在我们把题目改一改,结果会怎样呢?

  PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

  师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

  通过这些问题,你有什么发现?

  交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

  过渡语:师:如果多出来的数量不是1,结果会怎样呢?

  2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

  (1)同桌讨论交流、指名汇报。

  先让一生说出5÷3=1……2 1+2=3 的结果,再问:有不同的意见吗?

  再让一生说出5÷3=1……2 1+1=2

  师:你们同意哪种想法?

  (2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次*均分?

  (3)明确:再次*均分,才能保证“至少”的情况。

  3、教学例2

  (1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

  (2)**思考后指名汇报。

  师板书:7÷3=2……1 2+1=3

  (3)如果有8本书会怎样?10本书呢?

  指名回答,师相机板书:8÷3=2……2 2+1=3

  师:剩下的2本怎么放才更符合“至少”的要求?

  为什么不能用商+2?

  10÷3=3……1 3+1=4

  (4)观察发现、总结规律

  同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是*均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

  归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书: 商+1)

  三、巩固应用

  师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

  1、做一做第1、2题。

  2、用抽屉原理解释“扑克表演”。

  说清楚把4种花色看作抽屉,5张牌看作要放进的书。

  四、全课小结通过这节课的学习,你有什么收获或感想?

《鸽巢问题》优秀的教学设计3

  一、教学内容:

  教科书第68页例1。

  二、教学目标:

  (一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过**思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  三、教学重难点

  教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

  教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  四、教学准备:多**课件。

  五、教学过程

  (一)候课阅读分享:

  同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

  (二)激情导课

  好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

  (三)**导学

  1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

  请你再把题读一次,这是为什么呢?

  要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

  对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

  那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

  课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

  方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

  刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

  那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

  方法二:用“假设法”证明。

  对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(*均分)

  方法三:列式计算

  你能用算式表示这个方法吗?

  学生列出式子并说一说算式中商与余数各表示什么意思?

  2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

  这道题大家可以用几种方法解答呢?

  3种,枚举法、假设法、列式计算。

  3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

  还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

  4、表格中通过整理,总结规律

  你发现了什么规律?

  当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

  5、简单了解鸽巢问题的由来。

  经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

  (四)检测导结

  好,我们做几道题检测一下你们的学习效果。

  1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?

  (五)全课总结今天你有什么收获呢?

  (六)布置作业

  作业:两导两练第70页、71页实践应用1、4题。


鸽巢问题优秀教学设计 (菁选3篇)(扩展2)

——鸽巢问题教学设计3篇

鸽巢问题教学设计1

  教学内容:教科书第68页例1。

  教学目标:

  1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。

  2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。

  教学重点:

  经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

  教学难点:

  理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。

  教学模式:

  学、探、练、展

  教学准备:

  多**课件一套

  教学过程:

  一、游戏导入

  1.师生玩“扑克牌魔术”游戏。

  (1)教师介绍:一副牌,取出大小王,还剩下52张牌,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  (2)玩游戏,**验证。

  通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。

  2.导入新课。

  刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的问题。

  二、呈现问题,探究新知

  课件呈现:例1.把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。为什么呢?

  课件出示自学提示:

  (1)“总有”和“至少”是什么意思?

  (2)把4支铅笔放进3个笔筒中,可以怎么放?有几种

  不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)

  (3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?

  (一)自主探究,初步感知

  1、学生小组合作探究。

  2、反馈交流。

  (1)枚举法。

  (2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

  (3)假设法。

  师:除了像这样把所有可能的情况都列举出来,还有没有别的

  方法也可以证明这句话是正确的呢?

  生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。

  师:你为什么要先在每个笔筒中放1支呢?

  生:因为总共有4支,*均分,每个笔筒只能分到1支。

  师:你为什么一开始就*均分呢?(板书:*均分)

  生:*均分就可以使每个笔筒里的笔尽可能少一点。

  师:我明白了。但是这样只能证明总有一个笔筒中肯定有2支笔,怎么能证明至少有2支呢?

  生:*均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

  (4)确认结论。

  师:到现在为止,我们可以得出什么结论?

  生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (二)提升思维,构建模型

  师:(口述)那要是

  (1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

  (2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

  (3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中

  2.建立模型。

  师:通过刚才的分析,你有什么发现?

  生:只要铅笔的数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。

  师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)

  师:以上这些问题有什么相同之处呢?

  生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。

  师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)

  三、基本练习。

  四、拓展提升。

  五、课堂小结。

  六、作业布置。

  完成课本第71页,练习十三,第1题。

鸽巢问题教学设计2

  教学目标:

  1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

  2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

  3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

  教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学过程:

  一、创设情境、导入新课

  1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

  2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

  二、合作探究、发现规律

  师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

  1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (1)理解“总有”、“至少”的含义。(PPT)总有:一定有 至少:最少

  师:这个结论正确吗?我们要动手来验证一下。

  (2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

  探究之前,老师有几个要求。(一生读要求)

  (3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

  第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)

  第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

  师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

  师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

  (4)通过比较,引出“假设法”

  同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?

  引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

  (5)初步建模—*均分

  师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

  生:*均分(师板书)

  师:为什么要去*均分呢?*均分有什么好处?

  生:*均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不*均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

  师:这种先*均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

  板书:4÷3=1……1 1+1=2

  (5)概括鸽巢问题的一般规律

  师:现在我们把题目改一改,结果会怎样呢?

  PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

  师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

  通过这些问题,你有什么发现?

  交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

  过渡语:师:如果多出来的数量不是1,结果会怎样呢?

  2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

  (1)同桌讨论交流、指名汇报。

  先让一生说出5÷3=1……2 1+2=3 的结果,再问:有不同的意见吗?

  再让一生说出5÷3=1……2 1+1=2

  师:你们同意哪种想法?

  (2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次*均分?

  (3)明确:再次*均分,才能保证“至少”的情况。

  3、教学例2

  (1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

  (2)**思考后指名汇报。

  师板书:7÷3=2……1 2+1=3

  (3)如果有8本书会怎样?10本书呢?

  指名回答,师相机板书:8÷3=2……2 2+1=3

  师:剩下的2本怎么放才更符合“至少”的要求?

  为什么不能用商+2?

  10÷3=3……1 3+1=4

  (4)观察发现、总结规律

  同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是*均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

  归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书: 商+1)

  三、巩固应用

  师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

  1、做一做第1、2题。

  2、用抽屉原理解释“扑克表演”。

  说清楚把4种花色看作抽屉,5张牌看作要放进的书。

  四、全课小结通过这节课的学习,你有什么收获或感想?

鸽巢问题教学设计3

  教学目标:

  1.知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

  2.过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

  3.情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的`能力和兴趣。

  教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学准备:多**课件、扑克牌、3个笔筒。

  教学过程:

  一、魔术游戏激趣导入:

  1、老师这个魔术需要请1名同学来配合,谁愿意?

  向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。(学生打开牌让大家看)

  课件出示:至少有2张是同一花色。“至少”表示什么意思?

  引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。

  板演:鸽巢问题

  二、合作探究

  (一)列举法:

  课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?

  找一组学生上前实物模拟操作摆放情况。

  师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?

  概括得出:总有1个笔筒至少放2支笔。(及时肯定学生们的回答:你的逻辑思维能力真强)

  课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:

  1.分组探究,教师巡视指导。

  预设学生会出现以下几种情况:(1)实物模拟(2)图示(3)数的分解

  2.学生汇报,讲台展示。

  3.学生概括得出:总有1个笔筒至少放2支笔。

  4.小结:刚才我们通过以上方法列举出所有情况验证了结论,这种方法叫“列举法”。

  (二)假设法

  师问:同学们,将100支笔放99个笔筒,总有1个笔筒至少放进几支笔呢?

  追问有勇气列举吗?预设:没有勇气列举

  我们能不能找到一种更为直接的方法,找到“至少数”呢?

  课件出示:4支笔放3个笔筒,总有1个笔筒至少放2支笔。这句话能快速得到验证吗?

  1.引导学生思考:回顾下“至少”的意思,为保障每个笔筒都尽量少,不能出现某个笔筒特别多的情况,我们要把怎样分?学生尝试作答:

  生:如果每个笔筒里放1支笔,放了3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支笔。既而教师图示。(及时肯定学生的探究能力)

  2.引伸拓展:

  (1) 5支笔放进4个笔筒,总有一个笔筒中至少放进( )支笔。

  (2) 6支笔放进5个笔筒,总有一个笔筒中至少放进( )支笔。

  (3) 100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。

  也就是说:有n+1支笔放进n个笔筒中,总有一个笔筒至少放进2支笔。

  3.小结:这种先假设按*均分,然后再分配剩余量的方法叫做“假设法”。

  教师追问:列举法和假设法的优缺点是什么?

  学生总结出:

  列举法优点:能够做到不重复,不遗漏,结果一目了然。缺点:局限性,摆放更多笔浪费时间,效率低。

  假设法的优点是:简洁、迅速解决问题,更具有一般性。

  三、练习巩固,解决问题

  1.5只鸽子飞进3个鸽笼,总有1个鸽笼至少飞进了几只鸽子?为什么?

  2.同学们理解上面扑克牌的原理了吗?

  四、鸽巢原理的由来

  最早指出这个数学原理的是19世纪的德国数学家狄利克雷,这个原理被称为“狄利克雷原理”,又因为在讲述这个原理是,人们经常以鸽巢、抽屉为例,所以它往往也被称为“鸽巢原理”和“抽屉原理”。

  五:板书设计

  鸽巢问题

  “总是”“至少”

  列举法

  假设法*均分


鸽巢问题优秀教学设计 (菁选3篇)(扩展3)

——《鸽巢问题》优秀教学设计3篇

《鸽巢问题》优秀教学设计1

  教学目标:

  1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

  2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

  3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

  教学重点:

  经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:

  理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学过程:

  一、创设情境、导入新课

  1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

  2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

  二、合作探究、发现规律

  师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

  1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (1)理解“总有”、“至少”的含义。(PPT)总有:一定有至少:最少

  师:这个结论正确吗?我们要动手来验证一下。

  (2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

  探究之前,老师有几个要求。(一生读要求)

  (3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

  第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)

  第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

  师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

  师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

  (4)通过比较,引出“假设法”

  同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?

  引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

  (5)初步建模—*均分

  师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

  生:*均分(师板书)

  师:为什么要去*均分呢?*均分有什么好处?

  生:*均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不*均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

  师:这种先*均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

  板书:4÷3=1……11+1=2

  (5)概括鸽巢问题的一般规律

  师:现在我们把题目改一改,结果会怎样呢?

  PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

  师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

  通过这些问题,你有什么发现?

  交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

  过渡语:师:如果多出来的数量不是1,结果会怎样呢?

  2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

  (1)同桌讨论交流、指名汇报。

  先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?

  再让一生说出5÷3=1……21+1=2

  师:你们同意哪种想法?

  (2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次*均分?

  (3)明确:再次*均分,才能保证“至少”的情况。

  3、教学例2

  (1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

  (2)**思考后指名汇报。

  师板书:7÷3=2……12+1=3

  (3)如果有8本书会怎样?10本书呢?

  指名回答,师相机板书:8÷3=2……22+1=3

  师:剩下的2本怎么放才更符合“至少”的要求?

  为什么不能用商+2?

  10÷3=3……13+1=4

  (4)观察发现、总结规律

  同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是*均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

  归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)

  三、巩固应用

  师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

  1、做一做第1、2题。

  2、用抽屉原理解释“扑克表演”。

  说清楚把4种花色看作抽屉,5张牌看作要放进的书。

  四、全课小结通过这节课的学习,你有什么收获或感想?

《鸽巢问题》优秀教学设计2

  一、教学内容:

  教科书第68页例1。

  二、教学目标:

  (一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过**思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  三、教学重难点

  教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

  教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  四、教学准备:

  多**课件。

  五、教学过程

  (一)候课阅读分享:

  同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与

大家分享一下。

  (二)激情导课

  好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们

来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

  (三)**导学

  1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

  请你再把题读一次,这是为什么呢?

  要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

  对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

  那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

  课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长

整理出的大家的各种摆法,我们一

起来看一看吧!

  方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

  刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

  那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

  方法二:用“假设法”证明。

  对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(*均分)

  方法三:列式计算

  你能用算式表示这个方法吗?

  学生列出式子并说一说算式中商与余数各表示什么意思?

  2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

  这道题大家可以用几种方法解答呢?

  3种,枚举法、假设法、列式计算。

  3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

  还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

  4、表格中通过

整理,

总结规律

  你发现了什么规律?

  当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

  5、简单了解鸽巢问题的由来。

  经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

  (四)检测导结

  好,我们做几道题检测一下你们的学习效果。

  1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  4、育新小学全校共有2192名学生,其中一年级新生有367名同学是

2008年出生的,这个学校一年级学生

2008年出生的同学中,至少有几个人出生在同一天?

  (五)全课

总结今天你有什么收获呢?

  (六)布置作业

  作业:两导两练第70页、71页实践应用1、4题。


鸽巢问题优秀教学设计 (菁选3篇)(扩展4)

——《行程问题》教学设计3篇

《行程问题》教学设计1

  教学要求:

  1.能通过画线段图或实际演示,理解什么是”同时出发“”相向而行“、”相遇“等术语,形成空间表象。

  2.弄通每经过一个单位时间,两个物体之间的距离变化。

  3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。

  4.通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。

  教学重点:

  掌握相遇问题的结构特点,弄通每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。

  教学难点:

  理解行程问题中的”相遇求路程“的解题思路。

  教学过程:

  一、激发

  1.口答:

  (1)张华从家到学校每分钟走60米,3分钟走多少米?

  (2)汽车每小时行40千米,6小时行多少千米?

  要求:读题列出算式并说出数量关系。

  板书:速度×时间=路程

  **:这两题研究的是什么?

  2.揭题:以前研究的行程应用题,是指一个物体、一个人的运动情况,今天我们根据这个数量关系研究两个物体或两个人运动的一种情况。(板书:应用题)

  二、尝试

  1.出示准备题:张华家距李诚家390米,两人同时从家里出发向对方走去。李诚每分钟走60米,张华每分钟走70米。

  (1)读题看线段图,汇报你知道了什么?(回答:这题是两个人同时出发,对着而行;是两个人共同走这段路程的。)

  60米60米70米70米

  张华李诚

  390米

  (2)边看演示边说明:象这样两个人对着而行,我们叫它相向而行或相对而行。

  (3)看多**或实物演示:汇报你发现了什么?(1分钟,张华走了60米,李诚走了70米;2分钟张华走了120米,李诚走了140米,两人的路程和是260米,两人还距离130米;两人走3分钟分别走了180米、210米,两人间的距离变成了0米。

  问:说明了什么?(说明走完了全程,也就相遇了。)

  (4)学生打开书p.58页,根据”准备题“的条件填空,并回答:出发3分钟过后,两人之间的距离变成了多少?两人所走的路程和与两家的距离有什么关系?

  走的时间

  张华走

  的路程

  李诚走

  的路程

  两人走的路程的和

  现在两人的距离

  1分

  60米

  70米

  2分

  3分

  2.出示例5:小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米,经过4分两人在校门相遇,他们两家相距多少米?

  每分65米每分70米

  小强小丽

  ?米

  (1)读题,找出已知所求及他们是怎样运动的。

  (2)指名边指线段图边说解题思路,使学生看到两人相遇时走的路程就是两家之间的距离。

  第一种:小强4分走的路程+小丽4分走的路程

  第二种:(小强每分走的路程+小丽每分走的路程)×4

  (3)**列式解答

  65×4+70×4(65+70)×4

  =260+280=135×4

  =540(米)=540(米)

  追问:65×4、70×4各表示什么?(65+70)表示什么?

  (65+70)×4又表示什么?

  (4)比较两种算式之间的联系。

  (5)做一做第1题:志明和小龙同时从两地对面走来(如图),经5分两人相遇,两地相距多少米?(用两种方法解答)

  志明每分走54米小龙每分走52米

  口答:

  ①相遇时,志明行的米数列式为()×()=()米。

  ②52×5表示()。

  ③两地的总路程:()×()+()+()=()米或()×4=()米。

  3.小结:刚才我们研究的是什么类型的应用题?解这类题的关键是什么?

  板书:

  速度×时间=路程

  (两人速度的和)(相遇时间)

  三、应用

  1.练习十四第1题

  2.两列火车从两地相对行驶,甲车每小时行75千米,乙车每小时行69千米。

  (1)经过3小时两车相遇,两地间的铁路长多少千米?

  (2)如乙车先开出1小时,甲车才出发,再过3小时两车相遇,两地间的铁路长多少千米?

  (3)如果甲车先开出1小时,乙才开出,再过2小时两车相遇,两地间铁路长多少千米?

  四、体验

  1.谈谈你的收获?

  2.教师指明:今天学习的应用题是利用速度、时间、路程三者的关系解答相遇求路程的应用题。

  五、作业

  练习十四第2题

《行程问题》教学设计2

  教学目标:

  1、理解和掌握关于行程的数量关系的对应性,能灵活应用数量关系解决实际问题。

  2、经历行程问题的解决过程,培养学生的逻辑思维能力。

  3、在学习过程中,体会数学与生活实际的联系,培养学生的应用意识。

  教学重、难点:

  行程问题数量关系的灵活应用。

  教学过程:

  一、复习引入

  1、请说出关于行程问题的数量关系式。

  速度×时间=路程路程÷速度=时间路程÷时间=速度

  2、一辆赛车15分钟行驶45千米,按照这样的速度,105分跑完整个赛程。整个赛程有多长?

  “按照这样的速度”什么意思?整个赛程有多长就是求什么?

  指名回答:解答方法与解题思路。

  3、小结引入

  二、探究新知

  1、典型错题1

  一辆赛车15分钟行驶45千米,按照这样的速度,1小时45分跑完整个赛程。整个赛程有多长?

  (1)对比

  与复习题有什么相同?求路程要找什么?有什么不同?解答时怎么办?

  (2)同桌之间交流思路并解答

  (3)展示、点评

  要求学生结合数量关系说出算式的意思。

  预设:

  a:1小时45分=105分45÷15=3(千米/分)3×105=315(千米)

  b:45÷15=3(千米/分)3×45=135(千米)

  c:1小时45分=105分105÷15=77×45=315(千米)

  (4)小结

  应用关系式时,所有的量要一一对应,对应数量的单位要相同。

  2、典型错题2

  王叔叔从县城出发去王庄乡送化肥。去的时候用了3小时,速度是40千米/时,返回时用了2小时。原路返回时*均每小时行多少千米?

  (1)**审题

  (2)同桌交流思路

  求“原路返回时*均每小时行多少千米?”就是求什么?要在题目中找什么信息?

  (3)指名板演,全班点评

  3、总结

  两道题所求问题不同,但是我们在解决问题时都是从问题出发,找出问题与不变量之间的关系进行解答。在解答时,要注意量要一一对应,对应数量的单位要相同。

  三、巩固练习

  1、一辆长途客车40分钟80千米,照这样的速度,从安阳到郑州行了3小时20分钟。从安阳到郑州有多远?

  2、一辆旅游车在*原和山区各行了2小时,最后到达山顶。已知旅游车在*原每小时行50千米,山区每小时行30千米。这段路程有多长?

  3、小明骑远足时,3小时行了9千米。按照这个速度,小明从家到学校需要10分钟。小明家到学校有多远?

  4、汽车从甲地到乙地送水果,去时用了6小时,速度是32千米/时,回来时只用了4小时,回来的速度是多少?

  5、一段公路原计划20天修完,每天修150米。实际提前5天完成任务,实际每天修多少米?

  四、全课小结

  今天有什么收获?还有什么疑问?

《行程问题》教学设计3

  教学目标

  1、理解和掌握行程问题应用题中的数量关系,能运用数量关系解决实际问题。

  2、经历行程问题应用题的解答过程,体验抽象、归纳的思想和方法。

  重点难点

  重点:理解行程问题中的数量关系。

  难点:概括行程问题中的数量关系。

  教学过程

  一、情境引入

  1、在我们的日常生活中离不开交通工具,你知道有哪些交通工具呢?

  像特快列车、汽车等交通工具每小时行的路程叫做速度。出示第45页的各种交通工具的图画及时速。特快列车的速度是160千米/小时。读作:160千米每小时,表示特快列车1小时行驶160千米。普通列车每小时行驶106千米怎样写呢?

  2、出示小林步行图。

  小林每分钟走60米,他的步行速度是60米/分。

  引入:日常生活中有很多与行程有关的问题,我们把这样的问题称为行程问题应用题。(板书课题:行程问题应用题)

  二、探究新知

  1、教学例3。

  (1)出示例3,分别指名读题。

  在行程问题中,行驶所用的时间我们叫做时间,在一段时间里行驶的距离叫做路程。想一想,在第1题中汽车的速度、行驶的时间各是多少,要解决的问题是什么?**学生议一议,说一说。

  汽车的速度是80千米/小时,行驶的时间是2小时,要求的是汽车行驶的路程。

  (2)怎样求汽车2小时行驶的路程呢?

  汽车每小时行驶80千米,行驶了2小时,就有2个80千米,因此求汽车2小时行驶的路程是80×2=160(千米)。

  (3)第2题让学生在小组*同解答,并相互说一说解答的思路。

  板书:225×10=2250(米)

  2、讨论:你能发现速度、时间与所行的路程有什么关系吗?

  学生在小组中讨论,交流。

  根据学生汇报板书:速度×时间=路程

  在行程问题的应用题中,知道了速度和行驶的时间,就可以根据“速度×时间=路程”,求出行驶的路程。

  3、练一练。

  (1)练习八第5题。

  学生**思考,写出这三种速度,注意路程和时间的单位不同。

  (2)练习八第6题。

  要求小强每天大约路步多少米,也就是求什么?应根据哪个数量关系式来求。

  三、巩固反馈

  1、练习八第8题。

  学生**解答第(1)个问题,如果知道行驶的路程和速度怎样计算时间呢?

  2、练习八第9题。

  想想:这段路程包括哪些部分?怎样求这段路程长大约多少千米?

  3、练习八第10*题。

  先学生在小组*同写一写三位数乘两位数的算式。

  再议一议:乘积最大的算式怎样写?520×43=22360积最大

  四、课堂总结

  通过这节课的学习,你学到什么新的本领?

  课时作业

  一、笔算下列各题。

  408×24250×16307×35

  780×3047×30960×350

  二、李婷步行的速度大约是65米/分,她每天上学要用14分钟。李婷家离学校大约是多少米?

  三、***小林全家坐一辆汽车去旅游,这辆汽车的速度大约是85千米/小时。该车第一天行驶了5小时,第二天行驶了7小时。两天大约一共行驶了多少千米?

  四、两座城市相距300千米。一辆汽车从一座城市驶向另一座城市,去时用了6小时,返回时少用了1小时。

  (1)去时这辆汽车的速度是多少?

  (2)返回时的速度是多少?


鸽巢问题优秀教学设计 (菁选3篇)(扩展5)

——《鸽巢原理》优秀教学反思3篇

《鸽巢原理》优秀教学反思1

  本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。

  反思如下:

  1、从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。在上课伊始我就说“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。

  叫举手的一男一女两个同学**,然后问,老师想叫三位同学玩这游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一个凳子至少有两个同学”。

  相机引入本节课的重点“总有,至少”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

  2、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,**学生展开讨论交流。

  我引导学生借助*均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的.理解。

  最后,**学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。

  注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。

《鸽巢原理》优秀教学反思2

  一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

  一、情境导入,初步感知

  兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩“抢凳子”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的***,让学生觉得这节课要探究的问题,好玩又有意义。

  二、活动中恰当引导,建立模型

  采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

  在例2的教学中让学生借助直观操作发现,把书尽量多的“*均分”到各个鸽巢,看每个鸽巢能分到多少本书,剩下的书不管放到哪个鸽巢里,总有一个鸽巢比*均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

  大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。

  由于我提供的数据比较小,为学生自主探究和自主发现“鸽巢原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

  三、通过练习,解释应用

  适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。

  在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。

  不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只鸽巢里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个鸽巢中?”这样对学生来说,相对显的通俗易懂。

  因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强**的指向性、目的性。

《鸽巢原理》优秀教学反思3

  鸽巢原理是一个重要而又基本的数学原理,通过本课教学向学生介绍抽屉原理的由来,并通过对一些简单实际问题进行模型化地研究,使学生理解抽屉原理。掌握一些研究问题的方法,达到会证明生活中的某些现象,会解决生活中的某些问题的目的。

  本课教学时主要分以下几个层次:

  一、创设情境,巧设悬念

  通过猜月份相同这个情境引入,一是使教师和学生进行自然的沟通交流;二是调动和激发学生学习的主动性和探究欲望;三是为今天的探究埋下伏笔,初步理解“至少”的含义。

  二、合作探究,建立模型

  引导学生从简单的情况开始研究,渗透“建模”思想。通过学生**证明、小组交流、汇报展示,使学生相互学习解决问题的不同方法。

  通过说理,沟通比较不同的方法,让学生理解:为什么只研究一种方法(*均分的思路)就能断定一定有“至少2只笔放进同一个笔筒中”这个过程主要解决对“至少”、“总有”“*均分”这些词的理解。再通过摆或假设法继续发现规律,在这个过程中抽象出算式,并在观察比较中全面概括、总结抽屉原理,建立起此类问题的模型。

  三、鸽巢原理的由来

  数学小知识鸽巢原理、抽屉原理的由来,采用了微课的方式呈现,向学生介绍了德国数学家——“狄里克雷”和他的“抽屉原理”。

  使学生感受到我们本课所发现的规律和150多年前科学家发现的一模一样,增加探究的成就感。同时了解到鸽巢原理最初的模型和在生活中的广泛应用,增加一些数学文化气息。

  四、解决问题

  通过举例、解决问题,开阔学生视野,回归课前,回归生活,通过不同类型题的设计,让学生灵活运用此原理解释生活现象。


鸽巢问题优秀教学设计 (菁选3篇)(扩展6)

——用比例解决问题优秀教学设计 (菁选3篇)

用比例解决问题优秀教学设计1

  【教学内容】

  义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。)

  【教材分析】

  这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。

  正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。判断过程也是正反比例意义实际应用的过程。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  【学情分析】

  学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。同时,由于解决问题时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。

  【设计思路】

  新课程理念非常重视数学应用意识的培养。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用,才能真正实现数学的价值。要培养学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的角度寻找一种新的解决这种特殊数量关系的方法。从而丰富学生解决问题的策略,加强数学应用意义的培养。在教学设计和实践上,能否真正有效的培养学生的应用意识,其关键重要的一环是,如何引导启发学生面对实际问题,能主动尝试着从数学的角度运用比例的知识去解决问题。要为学生运用比例知识解决实际问题创造条件和机会。

  【教学目标】

  1.知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  2.过程与方法

  (1)通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  (2)借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  (3)通过策略多样化的训练,培养学生的发散性思维。

  3.情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学**惯。

  【教学重点】

  用比例知识解答比较容易的归一、归总应用题。

  【教学难点】

  掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  【教学关键】

  弄清题中两种量的变化情况。

  【教学准备】

  多**课件;小组学习记录卡。

  【教学方法】

  尝试教学法、引导发现法等。

  【教学过程】

  一、铺垫孕伏,建立表象。(课件出示)

  1.判断下面每题中的两种量成什么比例?

  (1)单价一定,总价和数量.

  (2)全校学生做操,每行站的人数和站的行数.

  2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1.出示例5情景图,说一说图意,了解数学事例。

  2.让学生自己解答,然后交流解答方法。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1.梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2.小组合作探究用比例解题的方法。

  发放学习记录卡(每个学习小组一张),小组合作学习。

  找出题中两种相关联的量,以及对应的数据,填写下表(未知的量用“x”表示)。

  和( )的( )相等。

  (三)形成策略,展示成果

  从上表可以知道()一定,所以()和( )成( )比例。也就是说,两家的( )

  从上表可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或12.8:8=x:10),比例的解是x=16。(板书解法)

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢? 启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方

  法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生**应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  三. 应用策略,拓展新知

  1.例6:印刷厂工人忙忙碌碌在搬运印好的书,一位工人师傅说,这批书如果每包20本,要捆18包。另一位师傅说:如果每包30本,要捆多少包?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  2. 学生**解决课本上第59页的做一做中的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  五、巩固练习,考考自己(课件出示)

  1.**去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2.仔细去分析,巧妙来选择。

  (1)*5小时做80个零件,照这样计算,16小时可以做多少个零件?这题( )

  A.用正比例解B.用反比例解 C.不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订2000本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是( )

  A.1800X =2000×40 B.2000X=1800×40

  3.争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15 =100:X ( )

  (2)一辆汽车行驶100千米节约汽油2千克,照这样计算,行驶1500千米,可节约汽油多少千克?这是一道正比例应用题。( )

  4.合理选条件,帮助他编题。

  小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

  小明需要你的帮助,你能帮助他编编题吗?

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:教科书P62练习九第3、7题。

用比例解决问题优秀教学设计2

  【教学内容】:

  人教版小学数学六年级下册(p59-- 60例5 、例6以及p60做一做及练习九相应的内容。)

  【教学目标】:

  1、掌握用正比例知识解答含有正比例关系问题的步骤和方法。

  2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

  3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。

  【教学重点】:

  1、判断题中相对应的两个量和它们的比例关系。

  2、利用正、反比例的关系列出含有未知数的等式,运用比例知识正确解决问题。

  【教学难点】:

  1、掌握用比例知识解答解答应用题的步骤和方法。

  2、理解“用比例解决问题”的结构特点,从而构建知识结构。

  【教学准备】:

  多**课件

  【教学过程】:

  一、回顾旧知

  1、判断下列每题中的两个量是不是比例,成什么比例?为什么?

  (1)购买课本的单价一定,总价和数量。

  (2)总路程一定,速度和时间。

  1

  (3)零件总数一定,生产的天数和每天生产的件数。

  (4)总钱数一定,用去的钱数和剩下的钱数。

  2、根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样的速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  【设计说明】:由旧知识引入,让学生巩固正、反比例的知识点,熟悉正、反比例的关系式,为新授支起“点路灯”。

  二、揭示课题、探索新知。

  (一)教学例5。

  1、课件出示例5情境图,

  问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

  (1)学生自己解答,然后交流解答方法。

  (学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)

  【设计说明】:这例题是学生以往学过的归一问题。这样做,让学生经历旧知的梳理过程,更能使学生明确旧、新解题思路的异同,从而达到整合学习的效果。

  (2)引入新课:像这样的问题也可以用比例的知识来解决.g

  (3)学生思考和讨论下面的问题:

  1、题目中有哪两个量?

  2、这两个量是什么关系,为什么?

  3、题目中的定量是哪个量。

  (4)集体交流、反馈

  2水费:用水吨数 = 每吨水的价钱(一定)

  (5)根据这样的比例关系,列出比例:

  根据上面的数据,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。 板书: 解:设李奶奶家上个月的水费是元。

  12.8 :8 =:10

  8=12.8×10

  = 128÷8

  =16

  答:李奶奶家上个月的水费是16元。

  (6)将答案代入到比例式中或跟算式方法比较结果来进行检验。

  【设计说明】:这一环节的设计是本节课的关键所在。课件出示之后,让学生**思考,解决问题,由表象的学习引入的新授课的殿堂之中来,让学生十分清楚用比例知识解决问题的全步骤;再让学生经历小组讨论环节,让优生从能做升华到会讲,达到知识的整合。

  2、即时练习,巩固提高。

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”让学生进行变式练习。

  (二)教学例6。

  1、课件出示例6的情境图,让学生说出题意。

  2、师:这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。(算式和比例)

  板书:解:设要捆包。

  30= 20×18

  3

  =360÷30

  = 12

  答:要捆12包。

  3、例题改编。如果要捆15包,每包多少本呢?

  4、师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  【设计说明】:让学生自主学习,把空间让给学生,把主动权交由学生,可以让学生体验到跳一跳摘到桃子之后的快感。达到学生真正的“主”起来,当学生遇到问题时教师要及时的指导。

  (三)概括总结。

  师:下面我们一起来概括一下用比例解决问题的步骤:

  1、设要求的问题为X;

  2、判断题目中哪个量是一定的?另外两种量成什么关系?

  3、列比例式;

  4、解比例,验算,作答。

  【设计说明】:组内交流之后,选派小组**展示交流,可以锻炼学生的胆量和有序**语言的能力,真正做到让学生知其所以然。可以让学生形成完整的知识脉络体系。

  三、巩固提高。

  1、教材60页的做一做:1、2题。

  2、教材练习九的第3、4、7题。

  四、全课总结。

  今天你们有什么收获?

用比例解决问题优秀教学设计3

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:成正比例的量的特征及其断方法。

  难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生**完成后师**:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除