六年级下册鸽巢问题公开课(鸽巢问题公开课教案)
1、《鸽巢问题》教学设计
《鸽巢问题》教学设计
教学目标:
1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:
一、创设情境、导入新课
1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)
2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。
二、合作探究、发现规律
师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)
1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。(PPT)总有:一定有 至少:最少
师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的'摆法?
探究之前,老师有几个要求。(一生读要求)
(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)
第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)
第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)
师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。
师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)
(4)通过比较,引出“假设法”
同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?
引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)
(5)初步建模—平均分
师:先在每个笔筒里放1支,这种分法实际上是怎么分的?
生:平均分(师板书)
师:为什么要去平均分呢?平均分有什么好处?
生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)
师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?
板书:4÷3=1……1 1+1=2
(5)概括鸽巢问题的一般规律
师:现在我们把题目改一改,结果会怎样呢?
PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)
师:为什么大家都选择用假设法来分析?(假设法更直接、简单)
通过这些问题,你有什么发现?
交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。
过渡语:师:如果多出来的数量不是1,结果会怎样呢?
2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?
(1)同桌讨论交流、指名汇报。
先让一生说出5÷3=1……2 1+2=3 的结果,再问:有不同的意见吗?
再让一生说出5÷3=1……2 1+1=2
师:你们同意哪种想法?
(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?
(3)明确:再次平均分,才能保证“至少”的情况。
3、教学例2
(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。
(2)立思考后指名汇报。
师板书:7÷3=2……1 2+1=3
(3)如果有8本书会怎样?10本书呢?
指名回答,师相机板书:8÷3=2……2 2+1=3
师:剩下的2本怎么放才更符合“至少”的要求?
为什么不能用商+2?
10÷3=3……1 3+1=4
(4)观察发现、总结规律
同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是平均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?
归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书: 商+1)
三、巩固应用
师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。
1、做一做第1、2题。
2、用抽屉原理解释“扑克表演”。
说清楚把4种花色看作抽屉,5张牌看作要放进的书。
四、全课小结通过这节课的学习,你有什么收获或感想?
2、鸽巢问题教学设计
教学目标
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)
教学过程
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
[设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]
二、操作探究,发现规律。
1.具体操作,感知规律
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果
(4,0,0)(3,1,0)(2,2,0)(2,1,1)
(2)师生交流摆放的结果
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)
[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的`筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报
2汇报想法
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
[设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]
三、探究归纳,形成规律
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]
根据学生回答板书:5÷2=2……1
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)
……
7÷5=1……2
8÷5=1……3
9÷5=1……4
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1
[设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]
五、课堂总结
这节课我们学习了什么有趣的规律?请学生畅谈,师总结
3、鸽巢问题教学设计
一、教学内容:
教科书第68页例1。
二、教学目标:
(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点
教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
四、教学准备:多媒体课件。
五、教学过程
(一)候课阅读分享:
同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课
好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。
(三)导学
1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?
要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?
对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。
那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?
课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!
方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。
那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?
方法二:用“假设法”证明。
对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)
方法三:列式计算
你能用算式表示这个方法吗?
学生列出式子并说一说算式中商与余数各表示什么意思?
2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。
这道题大家可以用几种方法解答呢?
3种,枚举法、假设法、列式计算。
3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?
还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。
4、表格中通过整理,总结规律
你发现了什么规律?
当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。
5、简单了解鸽巢问题的由来。
经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。
(四)检测导结
好,我们做几道题检测一下你们的学习效果。
1、随意找13位老师,他们中至少有2个人的属相相同。为什么?
2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?
3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?
(五)全课总结今天你有什么收获呢?
(六)布置作业
作业:两导两练第70页、71页实践应用1、4题。
4、鸽巢问题优质教学设计
教学内容
审定人教版六年级下册数学《数学广角 鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析
《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。
学情分析
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。
教学目标
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件 相关学具(若干笔和筒)
教学过程
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
[设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]
二、操作探究,发现规律。
1.具体操作,感知规律
教学例1: 4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果
(4 ,0 , 0 ) (3 ,1 ,0) (2 ,2 ,0) (2 , 1 , 1 )
(2)师生交流摆放的结果
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)
[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的'情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
鸽巢问题公开课教案
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报
2汇报想法
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
[设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]
三、探究归纳,形成规律
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]
根据学生回答板书:5÷2=2……1
(学情预设:会有一些学生回答,至少数=商+余数 至少数=商+1)
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1 ?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)
……
7÷5=1……2
8÷5=1……3
9÷5=1……4
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1
[设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题
课件出示习题.:
1. 三个小朋友同行,其中必有几个小朋友性别相同。
2. 五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]
五、课堂总结
这节课我们学习了什么有趣的规律?请学生畅谈,师总结
5、鸽巢问题优质教学设计
教学内容:
鸽巢问题(教材第68~69页)。
设计理念:
在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教材分析:
鸽巢问题又称抽屉原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:
“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
教学目标:
1.知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2.过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3.情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:
理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:
理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:
多媒体课件、扑克牌、笔、笔筒、合作作业纸等。
教学过程:
一、 游戏激趣 ,初步体验。
用扑克牌玩游戏(猜花色)。一副扑克牌共54张,去掉两张王牌,就剩52张。如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们信吗?请5名同学各抽一张来验证。
师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗?
师:老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理——鸽巢问题(板书课题)。
二、动手实验,探究新知
今天这节课我们就借助笔和笔筒,做几个有趣的数学实验来研究这个原理。
(一)研究笔数比笔筒数多1的情况。
1.出示例题:把3支笔放在2个笔筒里,该怎样放?有几种不同的放法?
学生上台实物演示。一共有2种摆法,第一种摆法是一个笔筒里放3支,另一个笔筒里没有,记作(3 ,0);第二种摆法是一个笔筒里放2支,另一个笔筒里放1支,记作(2, 1)。
2.提出问题:观察这两种摆法,老师说,“不管怎么放,总有一个笔筒里至少有2支笔”,这句话说得对吗?
学生尝试回答,师引导:这句话里“总有一个笔筒”是什么意思?这句话里“至少有2支”是什么意思?
得到结论:从刚才的实验中,我们可以看到3支笔放进2个笔筒,总有一个笔筒至少放进2支笔。
3.如果现在有4支笔放进3个笔筒,又可以怎样放?大家再来摆摆看,看看又有什么发现?
要求:小组合作:
(1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;
(2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;
(3)我们发现:总有一个笔筒至少放进了( )支笔。
4.学生汇报,展台展示。
交流后明确:一共有四种摆法。第一种摆法是一个笔筒里放4支,另外两个笔筒里没有,记作(4 ,0 ,0);第二种摆法是一个笔筒里放3支,一个笔筒里放一支,另外一个笔筒里没有,记作(3, 1, 0);第三种摆法是一个笔筒里放2支,另一个笔筒里也放2支,最后一个笔筒里没有,记作(2, 2 ,0);第四种摆法是一个笔筒里放2支,另外两个笔筒里各放一支,记作(2 ,1 ,1,)。
5.小结:刚才我们通过“画图”、“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“列举法”,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找到“至少数”呢?
学生操作演示,语言描述:把4支铅笔平均放在3个笔筒里,每个笔筒放1支,余下的1支,无论放在哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进了2支笔。(指名说,互相说)
引导发现:
(1)这种分法的实质就是先怎么分的?(平均分)
(2)为什么要一开始就平均分?(均匀地分,使每个笔筒的笔尽可能少一点,方便找到“至少数”),余下的1支,怎么放?(放进哪个笔筒都行)
(3)怎样用算式表示这种方法?算式中的两个“1”是什么意思?
6 .引伸拓展:
(1)7支笔放进6个笔筒,总有一个笔筒至少放进( )支笔。
(2)26支笔放进25个笔筒,总有一个笔筒至少放进( )支笔。
(3)100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。
学生列出算式,依据算式说理。
7.这么大的数据,一下子就找到了答案,发现了什么规律?
(二)研究笔数比笔筒数多2、多3的情况。
1.出示:如果把5支笔放在3个笔筒里,会有什么结果?
摆一摆,先平均分掉3支,那这剩下的2支笔该怎么分,才能保证至少有几支笔?怎样用算式表示呢?
2.把7支笔放在3个笔筒里,会有什么结果呢?为什么?
(三)研究笔数比笔筒数的2倍多、3倍多等情况。
如果把9支笔放在4笔筒里,把15支笔放在4个笔筒里,分别又会有什么结果?同桌讨论,再请同学说结果和理由。
(四)总结规律。
我们刚才研究了那么多种情况,大家仔细观察算式,想想:“不管怎么放,总有一个笔筒里至少有几支笔”,应该怎样求?。
(五)介绍鸽巢原理。
同学们,我们今天发现的原理,其实早在200多年前就被德国数学家狄利克雷发现了,请看大屏幕:“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
三、应用“鸽巢原理”,感受数学的魅力。
1.8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
2.把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么?
3.我们学校共有705名学生,其中六年(2)班有35名学生。请问下面两人说的对吗?为什么?
(1)我们学校至少有2人的生日是同一天。
(2)六(2)班中至少有3人是同一个月出生的。
4.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?
5.课前的游戏,为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?
四、课堂总结
1.通过这节课的学习,你有哪些收获?
2.应用鸽巢原理解题思路是什么?
6、∮饼问题》教学设计
教学目标
基础目标
1.通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2.认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
发展目标
1.通过实例理解优化的思想,形成从多种方案中寻找最优方案的意识,提高解
决问题的能力。
2.感受数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题
教学重点:体会优化思想
教学难点:理解烙3张饼的最佳方法。
教学准备课件制作、确定分组形式
教学形式自主探究、小组合作(组内异质,组间同质,按学生能力由低→高依次编号①②③④)
教学过程
小班特征活动预设
引入
一、课前谈话,激发兴趣。
1.同学们,人有两大宝,你知道是什么吗?猜猜看。(双手和大脑
2.说得非常正确,今天我们就用自己的双手合大脑来解决生活中的一个数学问题,好不好?
二、创设情境,解读信息。
1.(板书:饼)饼,你吃过吗?吃过哪些饼呢?
2.(板书:烙)“烙”,是指放在器物上烤熟的意思,烙饼是把饼放在器物上烤熟。这节课,我们一起来研究和学习烙饼问题。
三、自主探究,研究烙法。
探究双数张饼的最优烙法
1.课件出示图:这位阿姨家今天来了好几位客人,阿姨要烙饼招待客人,我们一起帮阿姨烙饼好吗?你从图中读懂了哪些数学信息?(最多烙2张、两面都烙、每面3分钟)
(1)烙一张饼最快要几分钟呀?你是怎么想的?请同学们把一只手当饼,数学书当锅,一起演示烙的过程。
嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了。
烙了计策?听到几声嗤啦声,烙了几次?
(2)烙两张饼最快要几分钟呢?最快是什么意思?
谁来演示?
(3)为什么烙一张饼和烙2张饼的时间都是6分钟(一样多)呢?可以同时烙,同时烙有好处吗?“同时”这两个字用得好。老师给他写下来
现在,我们一起来烙2张饼(嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了,听到几声嗤啦声,烙了几次?)
(4)你可以将烙饼的过程写下来或画下来吗?试试看。
2.(1)有了刚才的经验,烙4张饼最少需要几分钟呀?你又是怎么想的?
(2)同桌再用双手做饼,来烙4张饼,开始!学生动手操作4张饼的烙法。请同学上台演示。烙了几次?
3.(1)现在我们已经有很多烙饼经验了,烙6张饼要几分钟呢?你又是怎么想的?(6+6+6=18分钟)
(2)谁愿意到黑板上用手做饼,烙给大家看一看。
指名学生上台,在黑板上画好的圆圈里演示6张饼的烙
法。
4.总结偶数张饼的烙法:两张两张同时烙。
请你仔细观察偶数饼的烙法:你发现了什么秘密?
四、合作交流、探究烙法。
烙三张饼问题的优化
1.爸爸回来了,那3张饼最少要几分钟呢?要达到最快,我们要考虑什么?把象棋当作饼,摆一摆,并把你的过程写下来或画下来。
要求:(1)先立思考
(2)小组讨论。
小组轮流说说自己是怎么安排的?烙了几次?自己的方案一共需要多长时间烙完?
记录员负责纪律你们组的方法。
汇报员准备汇报
方法一:一张一张地烙,共18分钟;
方法二:先烙两张,再烙一张,共12分钟;
方法三:先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。
如果学生想不到第三种方法则进行启发引导:
在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?
(3)讨论:
①上面三种方法是否都可行?哪种方法最好?为什么?
②为什么这样烙只需要9分钟?一开始的烙法有什么问题?
(一开始的烙法中,烙第三张饼时锅的另一半资源(烙的位置)浪费了。而交替烙则没有这个问题。)没错。交替烙最大限度地使用了锅的资源,从而节约了烙的时间。
小结:我们称这种最省时间的方法为烙3张饼的“最佳方法”
(4)好,一个同学的2只手当作2张饼,另一个同学的1只手当作1张饼,把2本书叠在一起当作锅,同桌合作烙3张饼,开始!同桌合作,开始烙饼。
2.下面该烙几张饼啦,5张饼,四人小组讨论一下,看哪个小组烙的最快。
预设:方法一:3+29+6=15分钟
方法二:演示同学们看明白了吗?
7、《行程问题》教学设计
教学目标:
1、理解和掌握关于行程的数量关系的对应性,能灵活应用数量关系解决实际问题。
2、经历行程问题的解决过程,培养学生的逻辑思维能力。
3、在学习过程中,体会数学与生活实际的联系,培养学生的应用意识。
教学重、难点:
行程问题数量关系的灵活应用。
教学过程:
一、复习引入
1、请说出关于行程问题的数量关系式。
速度×时间=路程路程÷速度=时间路程÷时间=速度
2、一辆赛车15分钟行驶45千米,按照这样的速度,105分跑完整个赛程。整个赛程有多长?
“按照这样的速度”什么意思?整个赛程有多长就是求什么?
指名回答:解答方法与解题思路。
3、小结引入
二、探究新知
1、典型错题1
一辆赛车15分钟行驶45千米,按照这样的速度,1小时45分跑完整个赛程。整个赛程有多长?
(1)对比
与复习题有什么相同?求路程要找什么?有什么不同?解答时怎么办?
(2)同桌之间交流思路并解答
(3)展示、点评
要求学生结合数量关系说出算式的意思。
预设:
a:1小时45分=105分45÷15=3(千米/分)3×105=315(千米)
b:45÷15=3(千米/分)3×45=135(千米)
c:1小时45分=105分105÷15=77×45=315(千米)
(4)小结
应用关系式时,所有的量要一一对应,对应数量的单位要相同。
2、典型错题2
王叔叔从县城出发去王庄乡送化肥。去的时候用了3小时,速度是40千米/时,返回时用了2小时。原路返回时平均每小时行多少千米?
(1)立审题
(2)同桌交流思路
求“原路返回时平均每小时行多少千米?”就是求什么?要在题目中找什么信息?
(3)指名板演,全班点评
3、总结
两道题所求问题不同,但是我们在解决问题时都是从问题出发,找出问题与不变量之间的关系进行解答。在解答时,要注意量要一一对应,对应数量的单位要相同。
三、巩固练习
1、一辆长途客车40分钟80千米,照这样的速度,从安阳到郑州行了3小时20分钟。从安阳到郑州有多远?
2、一辆旅游车在平原和山区各行了2小时,最后到达山顶。已知旅游车在平原每小时行50千米,山区每小时行30千米。这段路程有多长?
3、小明骑远足时,3小时行了9千米。按照这个速度,小明从家到学校需要10分钟。小明家到学校有多远?
4、汽车从甲地到乙地送水果,去时用了6小时,速度是32千米/时,回来时只用了4小时,回来的速度是多少?
六年级下册鸽巢问题公开课
5、一段公路原计划20天修完,每天修150米。实际提前5天完成任务,实际每天修多少米?
四、全课小结
今天有什么收获?还有什么疑问?
8、《工程问题》教学设计
教学目标:
1、经历工程问题的抽象化过程,进一步感知它的产生。
2、复习巩固工程问题的一般解决策略。同时通过联想熟悉的事件解决与此相类似的数学问题,进而进行类比数学思想的渗透。
3、在基本解决简单工程问题的基础上进行拓展练习。
教学过程:
课前谈话。同学们,在数学这门学科里,大家最感到头痛的是什么?(解决问题)同学们还知道在这门学科里最有价值的是什么?(解决问题)它能让我们感受到数学的价值,体验到学习的快乐与成功。
一、感知工程问题的特征及产生的原因。
1、出示课件。上面显示以下习题。
1盘柏公路长8千米,单修甲队40天完成,乙队单做50天修完,两队合修多少天完成?
2盘达公路长20千米,单修甲队40天完成,乙队单做50天修完,两队合修多少天完成?
3柏达公路长28千米,单修甲队40天完成,乙队单做50天修完,两队合修多少天完成?
4一段路,单修甲队40天完成,乙队单做50天修完,两队合修多少天完成?
请同学们先认真观察这几个题有什么特征,再冷静地思考一下,看谁能最快解答出来?(教师巡视,发现那么没有一个一个解答的同学,只解答一个的同学。然后让这位同学汇报原因,直击中心两队每天的工作量(占总共的几分之几没发生变化)从而得出这一段路的长度可以有多种数量表示,我们可以把它们看作“单位1”来进行解答。对这些学生进行大力表扬。
8÷( + )
20÷( + )
28÷( + )
1÷( + )
二、复习基本解决策略。
1、出示例题。一项工程,甲队单做20天完成,乙队单做15天完成,如果两队合做多少天可以完成总共的 ?
1先认真读题,立思考(理清思路)完成习题。
2汇报交流。要求说出解题思路。通常有综合法和分析法两种。
3如果学生回答较好,则不必出示解题思路,如果不是很好则出示。而且要安排一个习题让学生做后进行交流说出自己的解题思路。
解题思路:我是这样想的。甲队单做20天完成,就可以想到甲队每天做的(也就是甲队的工作效率)占总共的 ;乙队单15天完成,就可以想到乙队每天做的(也就是乙的工作效率)占总共的 。甲乙两队合作一天就是甲队每天修的 和乙队每天修的 ,也就是 + 。用两队完成总工程的 ,除以两队每天完成总共的 + ,就可以得到需要多少天。 ÷( + )
像这种从条件入手解决问题的策略称为综合法。
我还可以这样想:要想求出甲乙合作多少天完成总共的 ,就必须找出甲乙合作的工作总量( )和甲乙合作一天的工作效率的和( + ),然后根据工作总量÷工作效率和=合作时间 ÷( + )像这种从问题入手解决问题的策略称为分析法。
4练习题。
三、拓展延伸。
1、出示一个类似的问题。一段路,甲单6小时行完,乙单8小时行完,如果两人同时从两地相向而行几小时可以相遇?
1立完成,交流解题思路。
2教师总结:像这种通过联想熟悉的事物或例子将问题转化成熟悉的例子数学上把这种解题策略称为类比。
解题思路:我是这样想的:这个题跟我们熟悉的工程问题有想类似,我可以把它转化为一项工程,甲单6小时行完,乙单8小时行完,如果两人合作几小时可以完成?
2、出示一个习题。一批布,单做上衣可以做10件,单做裤子可以做15件,如果要做成套的,可以做多少套?
1通过观察采取类比策略转化为工程问题然后解答。
2交流总结。
3、同学们还能列举出类似的例子吗?先立思考1-2分钟再抽生交流。
四、综合练习。
此环节是根据前面第二环节如果学生基础较好则此为补充。习题:一项工程,甲做6天完成,乙做8天完成。两人合做,中途甲因病休息1天这项工程前后共用了多少天?
9、《工程问题》教学设计
教学内容:人教版第九册第四单元 P95 例9
教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。
教学过程
一、创设情境,设疑激趣
出示小黑板
本班语、数两学习委员分发数学作业本,语文学习委员单分发要2分钟,数学学习委员单分发要3分钟,大家猜一猜,两人一起分发要几分钟?
1、学生读题
2、先让学生大胆猜想
3、然后老师提出:
我们一起来探究这个问题好吗?
二、由浅入深,辅路搭桥
出示小黑板:
1、一迭作业本60本,聪聪分发需要2分钟,每分钟发多少本?明明分发需要3分钟,每分钟发多少本?
2、一迭作业本60本,聪聪每分钟发30本,明明每分钟发20本,两个人合发,几分钟发完?
3、一迭作业本60本,聪聪单分发需要2分钟,明明单分发需要3分钟,两人合发需要几分钟?
让学生立完成,然后指名回答,教师板书:
1、60/2=30(本) 60/3=20(本)
2、60/(30+20)=1.2(本)或者:设X分钟发完?
(30+20)x=60
X=60/50
X=1.2
3、60/(60/2+60/3)或者:设两人合发需要X分钟
X(60/2+60/3)=60
三、引导探究,挑战问答
老师质疑:
假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?
1、要求学生分小组合作思考、探究 。
2、让各小组组长把解决问题的办法讲出来,老师板书:
A、1/2=1/2 1/3=1/3
B、1/(1/2+1/3)或者:设需要X分钟完成
X(1/2+1/3)=1
在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:
“你怎么知道这是对的?”
“还有没有别的思路或可能性?”
“列式为1/(2+3)你们认为对吗?为什么?”
四、促进思维,拓展发散
解决好“分发本子”问题后,我问学生:
你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?
五、反馈练习,以促双基
1、P95 “做一做”
2、练习二十五 第1题
3、指导学生自学例9
六、总结
1、今天学习了什么内容?
2、这节课你最大的收获是什么?哪些地方你还不太懂?
家庭作业:
练习二十五 第2、3、4题
10、《植树问题》教学设计
教材内容:人教版五年级上册数学广角植树问题P106页例1
教学目标:
1.通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。
2.培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。
3.通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。
教学重点:运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。
教学难点:“一一对应思想”的运用
教学准备:课件、10根小棒、尺子、白纸等。
:
一、创设情境引入
1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)
师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?
生:5
师:5是什么?
生:5个手指
师:就是手指数,那还能发现哪个数?
生:4个空隙
师:你能指给大家看看吗?
师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)
师: 4根手指几个间隔?三根呢?
2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的数学问题:植树问题。(板书课题)
二、发现规律
1.课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?
(1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)
(2)那么我们需要种多少棵树呢?
(3)请同学猜一猜、算一算
预设:100÷5=20? 100÷5+1=21? 100÷5-1=19
(4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)
三、建立数学模型
1、化繁为简
师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。
出示活动要求:
(1) 结合生活情境,立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。
(2) 完成后,在小组内说一说你的想法。
2、全班交流,完成表格。
3、引导总结规律,完成板书:
小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?
板书:两端都栽:全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?
预设:40÷5=8? 8+1=9(解释8表示间隔数)
4、回归应用
(1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?
(2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?
5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。
四、联系生活,解决问题
1.出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?
学生审题后立完成。
交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?
师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。
2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?
3.同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?
五、课堂总结:
这节课学了什么?有什么收获?
六、拓展延伸:
出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?
预设:只种了一端
师:现在间隔数和棵数有什么关系呢?
再出示一个房子,师:现在还是只种一端吗?
预设:两端都不种
师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。
板书设计:
植树问题
:两端都栽: 全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
11、《相遇问题》教学设计
教学目标:
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
教学时间:一课时
教具准备:实物投影仪、多媒体CAI、小黑板
教学过程:
一、复习
1、列式计算
(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?
(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?
2、板出关系式: 速度×时间=路程
二、引入
过去,我们研究的是一个物体运动时速度 、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的'关系。
三、新授
1、教学准备题
(1) 点击课件中准备题 出示题目
(2) 学生理解题意。
(3) 找出出发时间、地点、运动方向。
相向而行
时 间间
(4)点击热键 和 强调出发时间和运动方向。
(5) 用课件演示两人同时从两地向对方走去,引导学生思考会出什
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6) 利用课件出示准备题的表格,指导学生填表格的一、二行并课
件演示填空内容。
(7) 请一学生上来利用交换性课间完成表格第三行的填写。
(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样?
c、 两人所行的路程与全路程有什么关系?
(4) 学生试做。
(5) 用电脑课件演示解题思路并讲评。
(6) 学生看书、质疑。
(7) 小结:我们解例5时用了哪两种方法?
三、巩固练习
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?
(1)20xx米 (2)1000米 (3)无法确定。
四、全课总结
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
鸽巢问题教学设计一等奖课件
3、质疑。
五、聪明题 。
小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?
12、《行程问题》教学设计
一、概述
课名是《身边的行程问题》,是小学五年级的一堂数学课。
本节课所需课时为1课时,40分钟。
《身边的行程问题》是在学习了“速度、时间、路程间的数量关系”、“24时记时法”、“小数乘、除法”等知识的基础上进行的教学活动课,训练学生对大量数学知识进行综合运用的能力。
《身边的行程问题》这节数学课的主要学习内容是:通过上网收集有用信息,并且利用速度、时间、路程之间的数量关系,将收集到的信息加工整理后应用于现实生活以解决生活中的实际问题。
二、教学目标分析
1.知识与技能
(1)从具体事例中找出速度、时间、路程这三个数据。
(2)会计算起始时间到终止时间之间的经过时间。
(3)明确已知这三个量中的两个量就可以求出另一个量:路程=速度×时间、速度=路程÷时间、时间=路程÷速度。可以将这些公式应用于实际问题的计算。
(4)会将网上查到的速度、时间或路程数据转换成统一的数量单位。
2.过程与方法
(1)学会根据需要到网上查询信息,并会加工、评价、分析信息,利用信息解决生活中的实际问题。
(2)能共同分析、讨论所收集的信息,掌握利用信息共同协商解决问题的方法。
(3)能够将课上学到的数学知识、方法应用到日常生活中,通过学校留言板发布自己的解决方法。
3.情感态度与价值观
通过体验将学到的数学知识、方法应用于解决生活中的问题的过程,感受数学的价值。
三、学习者特征分析
本节课的学习者特征分析主要是根据教师平时对学生的了解而作出的。
学生是深圳市南山实验学校五年级三班的学生。
学生对数学的实际应用有非常浓厚的兴趣。
学生已经学习了速度、时间、路程间的基本数量关系,熟悉数量单位的转换以及已知其中两个量求第三个量的计算方法。
学生思维活跃,能积极参与讨论,口头汇报的能力较强。
所有学生都能运用网络查寻收集学习、解决问题所需的资料,并能在留言板上发布消息。
四、教学策略选择与设计
本节课主要采用抛锚式教学策略(问题解决式教学策略),利用网络上丰富的教学资源和Excel工具,使学生在解决问题过程中巩固认识速度、时间、路程之间的基本数量关系,并通过课后的作业使学生再次将知识进行迁移,从而提高学生的信息能力、应用数学知识解决问题的能力以及学习数学的兴趣,体现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展。
五、教学资源
硬件环境:
连互联网的多媒体网络教室、投影设备。
资源:
人民教育出版社九年义务教育小学五年级数学教材。
多媒体课件(见课件文件夹)。
网上讨论区。
电子表格软件及数据调查表。
交通网。
《身边的行程问题》教学流程图
六、教学过程
注:流程图中目标1~6对应教学目标分析的6个目标
七、教学评价
在课堂上,教师对学生的学习结果随时给出评价反馈,课后教师会经常对学生在讨论区上发表的知识运用情况做出评价,给出建议。
课结束时,教师对本节课的内容和目标完成情况加以总结,还会在网上发表对学生的课件学习和网上讨论情况的总结。
本节课从以下几个方面进行评价:
(1)信息查找:利用网络查找用于解决交通费用问题的信息。
(2)计算:利用Excel工具计算已知两个量求第三个量的问题,计算单位准确无误。
(3)结果分析及决策:对计算的结果进行比较,对采用哪一种交通方式作出恰当的决
策。
(4)知识应用:课后应用本课知识和方法,选择寒假出游或回老家的交通方式。
13、∮饼问题》教学设计
一、教学内容
人教版义务教育课标实验教材(四上)112的例1
二、教学目标
1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应 用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的.意识。
2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。
3、能积极地参与数学学习活动,体会到学习数学的乐趣。
三、教学准备:
多媒体课件;教师准备3个圆片代饼;每组3个圆片;
四、教学过程
(一)、谈话导入
同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。
(二)新课
1、自主学习
(1)出示本节课的学习目标,请同学们朗读。
(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?
(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?
(4)在小组内交流:烙三张饼最短用多少时间?
(5)小组汇报:如何烙三张饼用时最短?
第一张第二张第三张所花时间
第一次
第二次
第三次
2、探究烙饼最佳方法
(1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。
(2)你发现了什么?
(3)学生思考、观察、发现、汇报
烙的方法所花时间
3张饼
4张饼
5张饼
6张饼
7张饼
8张饼
9张饼
(三)过关检测
出示三道小题,请同学们解决,说一说解决的方法。
(四)、小节
师:这节课我们一块儿研究了烙饼问题,大家有什么收获?
小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。
14、《行程问题》教学设计
教学要求:
1.能通过画线段图或实际演示,理解什么是”同时出发“”相向而行“、”相遇“等术语,形成空间表象。
2.弄通每经过一个单位时间,两个物体之间的距离变化。
3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。
4.通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。
教学重点:
掌握相遇问题的结构特点,弄通每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。
教学难点:
理解行程问题中的”相遇求路程“的解题思路。
教学过程:
一、激发
1.口答:
(1)张华从家到学校每分钟走60米,3分钟走多少米?
(2)汽车每小时行40千米,6小时行多少千米?
要求:读题列出算式并说出数量关系。
板书:速度×时间=路程
提问:这两题研究的是什么?
2.揭题:以前研究的行程应用题,是指一个物体、一个人的运动情况,今天我们根据这个数量关系研究两个物体或两个人运动的一种情况。(板书:应用题)
二、尝试
1.出示准备题:张华家距李诚家390米,两人同时从家里出发向对方走去。李诚每分钟走60米,张华每分钟走70米。
(1)读题看线段图,汇报你知道了什么?(回答:这题是两个人同时出发,对着而行;是两个人共同走这段路程的。)
60米60米70米70米
张华李诚
390米
(2)边看演示边说明:象这样两个人对着而行,我们叫它相向而行或相对而行。
(3)看多媒体或实物演示:汇报你发现了什么?(1分钟,张华走了60米,李诚走了70米;2分钟张华走了120米,李诚走了140米,两人的路程和是260米,两人还距离130米;两人走3分钟分别走了180米、210米,两人间的距离变成了0米。
问:说明了什么?(说明走完了全程,也就相遇了。)
(4)学生打开书p.58页,根据”准备题“的条件填空,并回答:出发3分钟过后,两人之间的距离变成了多少?两人所走的路程和与两家的距离有什么关系?
走的时间
张华走
的路程
李诚走
的路程
两人走的路程的和
现在两人的距离
1分
60米
70米
2分
3分
2.出示例5:小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米,经过4分两人在校门相遇,他们两家相距多少米?
每分65米每分70米
小强小丽
?米
(1)读题,找出已知所求及他们是怎样运动的。
(2)指名边指线段图边说解题思路,使学生看到两人相遇时走的路程就是两家之间的距离。
第一种:小强4分走的路程+小丽4分走的路程
第二种:(小强每分走的路程+小丽每分走的路程)×4
(3)立列式解答
65×4+70×4(65+70)×4
=260+280=135×4
=540(米)=540(米)
追问:65×4、70×4各表示什么?(65+70)表示什么?
(65+70)×4又表示什么?
(4)比较两种算式之间的联系。
(5)做一做第1题:志明和小龙同时从两地对面走来(如图),经5分两人相遇,两地相距多少米?(用两种方法解答)
志明每分走54米小龙每分走52米
口答:
①相遇时,志明行的米数列式为()×()=()米。
②52×5表示()。
③两地的总路程:()×()+()+()=()米或()×4=()米。
3.小结:刚才我们研究的是什么类型的应用题?解这类题的关键是什么?
板书:
速度×时间=路程
(两人速度的和)(相遇时间)
三、应用
1.练习十四第1题
2.两列火车从两地相对行驶,甲车每小时行75千米,乙车每小时行69千米。
(1)经过3小时两车相遇,两地间的铁路长多少千米?
(2)如乙车先开出1小时,甲车才出发,再过3小时两车相遇,两地间的铁路长多少千米?
(3)如果甲车先开出1小时,乙才开出,再过2小时两车相遇,两地间铁路长多少千米?
四、体验
1.谈谈你的收获?
2.教师指明:今天学习的应用题是利用速度、时间、路程三者的关系解答相遇求路程的应用题。
五、作业
练习十四第2题
15、《相遇问题》教学设计
教学目标:
1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能正确熟练地解答相遇问题应用题。
2、沟通“相遇问题”三种类型的内在联系,提高学生的分析和判断能力。
教学重点:
沟通“相遇问题”三种类型的内在联系
教学用具:
幻灯、小黑板
教学过程:
一、组题练习沟通联系
1、练练
⑴两列火车分别从甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米,3小时后相遇。甲乙两站相距多少千米?
⑵两列火车分别从474千米的甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米。几小时后相遇?
⑶两列火车分别从474千米的甲乙两站同时相对开出,3小时后相遇。一列火车每小时行75千米,另一列火车每小时行多少千米?
2、说说
教师板书:
⑴(75+83)*3=474千米
提问:先求什么?再求什么?
⑵474/(83+75)=3小时
提问:先求什么?再求什么?
⑶474/3—75=83千米
提问:先求什么?再求什么?
3、比一比
这3题的条件和问题有什么相同和不同的地方?
教师要求学生填表:
条件
算式
一共行的路程
相遇的时间
速度
第一题
第二题
第三题
归纳小结:不管是哪一类总是先求速度和。
二、变式练习加深理解
1、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行的路程是小青的2倍,两人20分钟相遇。甲乙两地相距多少米?
提问:应先求什么?为什么?
学生练习(60+60*2)*20
还有别的方法吗?
2、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行120米,两人20分钟后还相距400米。甲乙两地相距多少米?
学生练习:400+(60+120)*20
你能说说“两人20分钟后还相距400米”这句话的意思吗?
三、课堂练习
课本练习八(一)第2——7题
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除