平均数教学设计一等奖四年级下册(平均数教学设计优秀)

1、《平均数》教学设计

去年3月,有幸听了杭州市胜利小学张浩强老师的一堂示范课------求平均数。听了后感触很多,很受启发。这是一堂体现主体性教学的数学课,其教学过程是这样的:

一、创设情境:课前口算。

教师计时3分钟让学生在口算题单上口算,要求学生实事求是,按时完成。然后,教师宣布答案,生订正。

二、统计各小组做对的数量,引入平均数。

学生统计出各组做对的总数量,教师板书。师问:哪里个组最好。引导学生看出每个组人数不一样,不能看总量。师问:有没有其它办法。生说:可以求各小组的平均数,比较平均数。师问:平均数什么意思?在这里怎样求?引导学生理解平均数的含义。

每个小组把各自的平均数计算出来,计算有困难的可以用计算器。生报平均数,师板书,找出第一名,师说:第一名是口算冠,下课后合影。

三、引入生活:你们在生活中有没有碰到过平均数。让学生举例说。师问:如果我们要算一下在座每个教师的平均年龄,怎样算?

四、教师根据板书说明原始数据,让学生比较每个小组的平均数和原始数据,发现了什么,有什么办法估计平均数。引导学生归纳出:平均数不能比最大的原始数据大,不能比最小的原始数据小,而最接近中间数。让学生根据这一规律估计各自小组的平均年龄,再计算。

五、练习书上2题和3题,每个同学立完成,可以用计算器。

六、出示:据调查孙水河的平均水深是1、00米,木呷的身高是1、15米,木呷掉到河里可能被淹死吗?让学生讨论回答。

听了这节课,我深受启发。给我的启发有四:一是教师上课时要使用激励性语言,态度可亲,面带笑容,才能营造轻松愉快的氛围,调动学生学习的积极性。一堂课上,得体的激励性语言会让学生情绪高涨,心情愉快,更加认真的去学习。本节课上,张浩强老师就使用了诸如:“池的孩子就是不一样,速度很快”“同意他的观点吗”“你的眼睛水灵灵的,很亮”“你其实不要急,慢慢地说,你会说的更好一些”“够厉害的”“真厉害,你比我厉害”这些激励性语言。在他的调动下,课堂气氛越来越活跃。

二是数学教学要联系生活,要充分调动学生的生活经验。众所周知,现实世界是数学的丰富源泉,小学生学习的数学应是生活中的数学,是学生“自己的数学”。联系了生活实际,举学生自己生活中的例子进行分析解决有关数学问题,让学生从课本走进生活,会使他们真正体验到数学的应用和价值,体验到数学学习的乐趣和成就感。本课中,张浩强教师就让学生算本小组同学的平均年龄和平均身高。还出了一道学生熟悉的河流“孙水河”的数学思考题。这些都是学生生活里有的,学生熟悉的事物,学生讨论起来就很有兴趣。

三是在学习活动中,让学生去经历去体验数学知识的形成过程。学习活动中,学生更愿意自己去经历,去实践。学生或许相信你告诉他的,但他更愿意相信自己看到的、经历过的事,这就是一种体验。让学生经历学习的体验非常重要,因为它直接影响到学生对知识的主动建构的质量。比如张浩强老师上的这节课,重要的不是平均数的含义和作为代数公式的运算程序,而是它所包含的统计过程。张老师就让学生经历了统计的过程,而不是一来就出示一组数据,让学生求平均数。张老师上课时创设情景——口算比赛,让学生不知不觉地进入课堂,然后通过解决“哪个组最好”让学生去统计做对的题的数量,在比较时学生认识到必须求出平均数才能比较出谁最好,从而引出怎样求平均数。

四是教师要有很强的驾驭课堂的能力。体现主体性教学的课堂,你不知道学生会提出什么问题,会怎样去回答这个问题,有时回答的话语不着边际,有时会有奇思妙想,有些是老师完全没有想到的。这时,就要求教师课前认真的备课:不仅要备教材,还要备学生。教师在备课时一定要了解学生,吃透教材,对课上所要解决的问题要有一个估计:哪些问题学生能立解决,哪些问题要发挥学生之间的优势互补,然后根据实际情况安排是否进行小组合作学习。同时,在课堂上教师一定要认真听学生说话,听懂孩子们的每一句话,站在学生的角度体会、思考,理解每一个学习信息。这些信息存在着有用与无用、重要与次要之分,这就需要教师具有敏锐的鉴别能力,根据知识结构的需要进行分析综合,从而选择、重组已有信息,为学生指引思维的方向。然后还要要求教师有很强的应变能力和丰富的知识,才能驾驭好课堂,不至于到时手足无措,不知道怎样应对。

2、《平均数》教学设计

教材第43页例2,练习十一第4、5题。

教学目标:

1.使学生进一步掌握平均数的意义和求平均数的方法。

2.懂得平均数在统计学上的意义和作用。

3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。

教学重点:

掌握平均数的意义。

教学难点:

掌握求平均数的方法。

教学过程:

一、复习引入

三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?

提问:题目的已知条件和问题分别是什么?

要求平均每一组投中多少个?应该怎样列?

提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?

二、快乐体验,学习新知

1、出示教科书第43页的例题2。

提问:从这两张统计表中,大家发现了什么?

在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。

2、学生动手列式计算。

3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。

三、巩固练习

1、科书第45页练习十一的第4题:

(1)完成第1小题。提问:什么叫月平均销售量?

要求哪种饼干月平均销售量多?多多少?应该怎样列式?

(2)完成第2小题让学生自由发表看法。

(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

2、练习十一的第5题。

学生立完成,集体订正。

四、课堂小结:

本节课学习了什么?你有什么收获?

3、《平均数》教学设计

教学目标

1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

教学重点

难点 掌握求平均数的方法。

体会平均数在实际生活中的应用。

教具准备

多媒体课件

教学课时

1课时

教学过程

一、情境引入。

1、出示课件:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?

2、学生质疑,说一说你的看法。

二、新授。

1、解决疑惑。

学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

2、求平均数的方法。

出示课件:“新苗杯”少儿歌手大奖赛的成绩统计表。

评委1 评委2 评委3 评委4 评委5 平均分

选手1 92 98 94 96 100

选手2 97 99 100 84 95

选手3 90 98 87 85 90

(1)把统计表填写完整,并排出名次。

(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

3、教授解题策略。

题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

求平均数的方法:总数量÷总份数=平均数。

选手1:(92+98+94+96+100)÷5=96(分)

选手2:(97+99+100+84+95)÷5=95(分)

选手3:(90+98+87+85+90)÷5=96(分)

4、计算完毕请补充统计表,并排出最终名次。

板书设计

平均数的再认识

平均数的意义。

求平均数的方法:总数量÷总份数=平均数。

4、《平均数》教学设计

教学目标:

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。

2.能运用平均数的知识解释简单生活现象,解决简单的实际问题,进一步积累分析和处理数据的方法,发展数感。

3.在生活中增强与他人交流的意识与能力,在解决实际问题的过程中体验运用知识解决问题的乐趣,建立学好数学的信心,渗透品德教育。

教学重点:理解平均数的意义和求平均数的方法。

教学难点:理解平均数的意义。

教学设计思路:

根据学生耳鸣目染的生活现状创设不同层次的问题情景,学生在答题过程中逐步感受求平均数是解决一些实际问题的需要,并通过动手移、合与分的操作和思考交流体会平均数的意义,学会计算简单数据的平均数,从中渗透安全教育。

教学过程

一、创设情境,探究新知。

同学们,现在全区开展“美丽广西.清洁乡村”的活动,作为市民,我们也要为此付出一份力量。你看,阳光学校三(2)班的同学为了响应党的号召,利用课余时间进行捡别人丢弃的矿泉水瓶比赛,他们班共有37人,每 3人为一组,可以分几组还剩几人?37÷3=12(组)……1(人)

:用学生耳鸣目染的生活情景创设问题,即复习了平均分,又为下一个环节做好铺垫。

(一)两队人数相同,比总个数。

他们班每天从2个组中评出一组“美丽之星”,你觉得他们哪一组获星?

出示:

A 组

B 组

生:B组获星。

师:你是怎么比的?

生:当他们人数相等时,比较捡的总个数就能比出哪一组获星。

(二)两组人数不同,比平均数,发现求平均数的方法。

我们再来看看下面两组,看看哪一组获得这天的“美丽之星”出示:

C组

D组

生:我的建议也是比较他们的总数?

生:我有不同意见,人数不同比总数不公平。

师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。

师:那怎么比才公平呢?

生:减少1个人

生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。

师:说得多好!你不但会分析问题而且很会做人!

师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。

:利用这班分组后多一人的人数,产生人数不同如何比的问题,提升探究问题的兴趣。

(学生小组活动,教师巡视,学生汇报)

生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。

师:那我们怎样平均分呢?

学生诉说小结:也就是使每组中的每个人捡得同样多。

学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。

(学生用学具探究方法)

师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。

师:谁来汇报 D组的呢。

师:你是用什么方法找出D组同样多的?

(生讲师再次呈现移多补少过程)

探讨不同的方法引出列式计算。

板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

学生指着板书说说先合后分的方法。

师:你为什么C组除以3, D组除以4呢?

生:因为C组有3人而D组有4人。

归纳得出:总数量÷总份数

谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)

完善板书:总数量÷总份数=平均数

:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。

二、深入理解平均数的定义(意义)

师:C组的总数量是多少?总份数呢?平均数是?

师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。

仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)

生:超出平均数的部分和不到平均数的部分相同。

生:平均数比这里最大的数小一些,比最小的数大一些。

生:平均数是在这组数据的最大数和最小数之间。

师:还有发现吗?

生:C组的数据还有和平均数恰好一样的。

师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?

生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。

师:你分析得很有道理。

师:我们比较这两组的平均数,哪个组获星了?

生:A组获星了,

师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧

:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。

三、用一用,怎样理解生活中的平均数。

师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)

师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……

师:老师也带来一些素材:(课件出示)

小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。

过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!

:感受生活中平均数的意义,激发学生解决问题的兴趣。

(一)平均成绩

下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚成绩表,请你算一算谁授

(学生立填写表格,有的很快就算出了结果,有的还在笔算)

师:你为什么算得这么快?能把你的小窍门告诉大家吗?

生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。

师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。

用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。

:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。

(二)歌咏比赛平均分

出示

要求算出1号选手的实得分

师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?

学生的答案在82到97之间

猜完列式验证自己的答案。

(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)

小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。

:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。

(三)平均水深

老师这里有一道有趣的问题

一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?

生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。

(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)

出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!

:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。

四、总结评价,感受成功。

提问:通过这节课的学习,你有哪些收获呢?

从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。

布置作业:利用今天所学的知蚀解决课本P44练习十一的第1、第2题。

课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。

五、板书设计

平均数

①移多补少

②先合后分 总数量÷总份数=平均数

C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

5、《平均数》教学设计

教学目标:

1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。

2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。

3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。

教学重点:体会平均数的意义,掌握求平均数的方法。

教学难点:理解平均数的意义

教学具准备:套圈统计图(每组一个)、多媒体课件

教学过程:

一、设疑引欲,提出问题

看套圈比赛的录像,出示统计图。

平均数教学设计优秀

1、这幅统计图表示他们套中的个数,从中你知道了些什么?

2、想一想,是男生套得准一些还是女生套得准一些呢?

二、解决问题,探求新知

1.产生求平均数的心理需求

(1)学生讨论交流哪一队套圈套得准一些。

(2)提问:怎样比才既合理又公平呢?

(3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。

2.自主探索平均数的意义和计算方法

先求男生平均每人套中的个数,学生讨论交流。

(1)通过移多补少,直观揭示平均数的意义

(2)揭示“先求和再平均分”的求平均数的一般方法

列式计算:5+9+8+6=28(个)28÷4=7(个)

这里的28指的是什么?为什么要除以4?

求女生平均每人套中的个数。

(1)估一估

(2)算一算:11+4+8+2+5=30(个)30÷5=6(个)

这里的30指的是什么?为什么这里用总数除以的是5而不是4?

小结:通过比较,我们发现在这次比赛中,男生套得准一些。

3.理解平均数的范围

(1)比较

男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、拓展练习,深入理解

1.练习用“求和再平均分”的方法求平均数

(1)出示校运动队三年级学生肺活量情况统计图(三名学生)

提问:你能算出他们的平均肺活量吗?

交流:把你的想法与同学们交流交流。

(2)出示三年级部分学生肺活量情况统计图(四名学生)

提问:算算他们的平均肺活量。

比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。

2.加深对平均数意义的理解

(1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的`平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?

(2)学生交流

3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确

(1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。

我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)

次数第一次第二次第三次第四次第五次心率(次/分)150160180170140

(2)提问:从表中你知道些什么?

(3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?

①130次②160次③190次

(4)根据平均数的这个特点,你能说出这个平均数的范围吗?

(5)小明的运动量适宜吗?

4.进一步理解平均数的意义

(1)出示一高一矮两名学生

指一指:他们俩的平均身高大概在什么位置?

(2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)

指一指:另一位体坛明星大概有多高?

(3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)

指一指:这位运动员的身高大概在哪里?

猜一猜:他是谁?

(4)出示新浪网上的NBA排行榜

找一找:有平均数吗?

想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?

四、全课总结,提升认识

6、《平均数》教学设计

第一课时

一、教学目标:

1、使学生理解数据的权和加权平均数的概念

2、使学生掌握加权平均数的计算方法

3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:

1、重点:会求加权平均数

2、难点:对“权”的理解

3、难点的突破方法:

首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。

在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?

通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。 要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。能否由99?61100?62?得出第二小组平均成绩这样的结论?为什么?这个例子22

简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。

在讨论栏目过后,引出加权平均数。最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。

三、例习题意图分析

1、教材P136的问题及讨论栏目在教学中起到的作用。

(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。

(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。

(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。

(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。

2、教材P137例1的作用如下:

(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。

(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。

(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。

3、教材P138例2的作用如下:

(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。

(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。

(3)、它也充分体现了统计知识在实际生活中的广泛应用。

四、课堂引入

1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?

x=1(79+80+81+82)=80.5 4

五、例习题分析:

例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。

六、随堂练习:

1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占

2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果求这些灯泡的平均使用寿命?

答案:1.x小关 =79.05 x小兵 =80 2. x =597.5小时

七、课后练习:

1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .

2、某人打靶,有a次打中x环,b次打中y环,

则这个人平均每次中靶

3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占

试判断谁会被公司录取,为什么?

4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人? 答案:1.2x1?3x2?4x3?5x4ax?by2.3.x甲=86.9 a?bx1?x2?x3?x4

x2 =96.5

乙被录取

板书设计:

教学小记:

4. 39人

7、《平均数》教学设计

导学目标:

1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。

2. 学会计算简单数据的平均数。

3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。

重 点:学会求简单数据的平均数。

难 点:理解平均数的意义。

教学资源:自制课件、彩笔及笔筒

教学过程:

一.创设情境,提出问题

1、谈话:同学们,课间休息时玩什么?

(丢沙包、踢毽子、跳皮筋、跳绳等)

课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。

男生和女生谁获胜了?怎样比较?(求总数)

2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?

你觉得男生成绩好还是女生成绩好?比什么?怎样比?

A、比男、女生的总数(质疑不公平)

B、套的最多的、最少的都是女生,不好比。

C、比男生还是女生套的准?

二.自主探索,解决问题

1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?

小组内说说自己的想法。

各组代表向全班学生汇报

本组的想法。引出平均数。即:分别求出男生、女生平均每人套中的个数。

2、求男、女生平均每人套中的个数

(1)学生演示移动条形统计图中方块,使4个男生套中的个数变得同样多。

移动女生条形统计图中方块,使5个女生套中的个数变得同样多。

动手操作移动彩笔。(说清移动方法及结果)

质疑:移动有局限性,数大或者没图怎么移?(如:求平均身高)

(2)通过计算求平均数:

求男生平均每人套中的个数。(抽生讲解思路并板书)

立计算女生平均每人套中的个数。(抽生板书)

求丝带的平均数。(P94页2题)

求平均身高。

小结:求平均数的过程及注意事项。

三、巩固练习,拓展应用。

1、 提问:学校篮球队员的平均身高是160厘米。李强是学校篮球队队员,他身高是155厘米,可能吗?学校篮球队可能有身高超过160的队员吗?

(1)在小组内讨论。

(2)指名回答,要求说出理由。

2、河水平均深度110厘米,身高145厘米,下河游泳一定安全吗?

(1)在小组内讨论。

(2)指名回答,要求说出理由。

揭示平均数的意义:平均数表示的是一组数据的平均水平,有些数可能比平均数大,有些数可能比平均数小,有些可能和平均数相等。

四、实际应用:

1、生活中哪些地方用到平均数?

2、给本节课打分(提出对老师、同学的建议,进一步渗透平均数的应用意识。)

五.课堂总结:今天学会了什么?有哪些收获与困惑?

教学反思

用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与困惑:

收获一:情境的成功运用。课一开始,我以学生熟悉而又喜欢的运动会跳绳的录像引入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫,同时也为求平均数的方法(移多补少法)起到了迁移的作用。在例题教学中,我让学生观看了“套圈比赛”的录象,学生注意力特别集中,兴趣盎然,既而我抛出一个实质的问题:是男生套的准还是女生套的准?一石激起千层浪,学生们议论纷纷,有的认为男生组,有的认为女生组,学生各抒己见,各自发表了自己的意见?然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理。当学生感受到要比较谁套得更准一些必须先求出“男、女生平均每人投中的个数”后,我并没有急着让学生讨论或者讲解“平均每人套中个数”的含义,而是让学生用移一移,画一画的,或者用计算的方法求出平均数。在此,我把思考的权利交给学生,不交流的权利还给学生,让学生充分感受所学知识的价值。

收获二:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材,如:第一题是对平均数的理解;第二题是对平均数的应用,第三题是对平均数的深化认识。这三道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。这样的教学实现了数学教育的多重价值,使各学科起到了有效的整合作用。

但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!

8、《平均数》教学设计

教学目标:

1.经历探索平均数的过程,学会寻找平均数的方法——移多补少(操作)、先总后分(计算),理解平均数的含义。

2.在具体情境中,运用平均数的知识解释简单生活现象,解决简单的实际生活问题。

教学重点:认识平均数,会找平均数。

教学难点:理解平均数的含义。

教学过程:

一、情境激趣,引出问题:

1、看到黑板上这几个圆圆的圈你想到了什么?

2、这节课我们就把它看做一个靶子,来做个游戏好吗?

我们先来制定一个游戏规则,投中这个靶心的得10分,投到第二个圈的得9分,投到第三个圈的得8分,投到第四个圈的得7分,投到圈外边的得6分。如果投到线上怎么办?我们就看投到线那边的多一些就算那边的分,但是如果你连 黑板都没投中就是0分,同意吗

我们从中间一分为二,这边算一组,这边算一组。我们给这边起个名字叫第一组,这边叫第二组(板书)。第一组的同学向老师挥挥手,第二组的同学向老师点点头。

我们每组选5个代表参加游戏,请大家排一队交错站好。(给每人发一个沙包)好,比赛开始。

板书: 第一组 第二组

[]+[]+[]+[]+[]=[] []+[]+[]+[]+[]=[]

下面我宣布胜利队是第 一组,欢呼一下吧!

看大家玩的这么开心,老师也忍不住想要参加这个游戏。我想参加你们组,你们欢迎吗?那我也来投一次好吗?现在第二组的得分是[]分,我重新宣布胜利队是第 二组。

你们什么想法都没有?对这个结果有意见吗?(采访第一组)你们说这样比公平吗?

看来人数不相等,用比总数的方法来决定胜负是不公平的,那么怎样比才公平呢?不增加人,有什么好办法吗?请和身边的同学讨论一下吧!

二、解决问题,探求新知

根据学生回答板书:

([]+[]+[]+[]+[])÷5 ([]+[]+[]+[]+[])÷6

=[]÷5 =[]÷6

=[] =[]

那组赢了?能说出理由吗

第二组虽然输了,但也不要气馁,你们课下还可以再比。

第一组这个“5分”是谁投的?

这组中最多的是几分?最少的是几分?5与它们相比怎么样

小结:可见,5分既不是第一组的最高水平,也不是第一组的最低水平,而是处在最高和最低之间的一个平均水平,咱们就把表示平均水平的这个数叫做平均数。平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

求平均数的方法是什么:总数÷份数=平均数

三、巩固练习,拓展应用

1、今天的数学课上,我发现了有3位同学听的特别认真,老师讲课他们听得很认真,同学发言他们也听得很认真。(三人上台领奖品,老师分别奖励他们1支、3支、5支铅笔)

请上台的三个小朋友数一数,手里有几只铅笔,然后大声的告诉大家。你们说老师这样奖励公平吗?怎样才公平吗?那么你想怎样把它们移一移。和身边的同学商量一下,台上的3个同学也互相商量一下。

你真了不起!想出了移多补少(板书)的办法。

你还有什么方法求出来吗?

学生计算,指名说出算式,师板书:(1+3+5)÷3

=9÷3 =3

谁来说一说,求平均数一般可以用哪些方法?你喜欢用哪种方法?

2、 估一估:

为了布置教室,小丽买来一些彩带,请你帮小丽估一估这三条彩带的平均长度大约是多少?

请你在本上列式算一算。学生尝试练习后评讲。

你是怎么算的?都是先求和再平均分吗?为什么这个题目你不用移多补少的方法?

看来我们要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少简单;数量多,相差大,用先求和再平均分。

3、刚才我们一起认识了平均数,也知道了怎么求平均数,接下来我们来看一看生活中有关平均数的问题。

判断(对的打“√”,错的打“×”。)

(1)、小刚语文、数学、英语三科的平均成绩是94分,小刚的数学成绩一定是94分。( × )

(2)、小明所在班级同学的平均身高是132厘米,小华所在班级同学的平均身高是135厘米,所以小华比小明高。(× )

(3)、三名同学的年龄之和是42岁,这三名同学的平均年龄是14岁。(√ )

(4)、小明星期六做了20道题,星期天上午做了12道,下午做了7道,小明平均每天几道题 列式为:(20+12+7)÷3 = 13(道) (× )

4、想一想、说一说

有危险吗?课件展示:游泳池和小明的问题。

想一想:出示游泳图,平均水深110厘米,小明身高145厘米,下去游泳有危险吗?

平均数教学设计一等奖四年级下册

生讨论是否有危险。说说理由。

5、出示1—9九张数字卡片

下面请你把1—9九张数字卡片按从小到大的顺序摆在桌子上。卡片上都写着几? 下面做这样这样一个竞赛:

(1)请你从所有的卡片当中任意取出2张,让这两张卡片的平均数是5。

还有吗谁能把所有的答案都说出来?

为什么这两个数的平均数是5?到前面展示。

(2)再做这样一个竞赛:

随便拿出几张卡片,三张、四张、五张或更多张都行,要求这几张的平均数也是5。 到前面展示。 再多点还有吗 都用上了平均数还是5。

(3)下面请你去掉几张,平均数还是5。

四、小结

这节课你开心吗?通过这节课的学习你有哪些收获呢?

9、《平均数》教学设计

教学目标:

1、使学生在丰富的具体问题情境中,感受平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数。)

2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、使学生进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

教学重点:体会平均数的意义,掌握求平均数的方法。

教学难点:理解平均数的意义。

教学过程:

一、 创设情境,提出问题

1、 同学们,喜欢玩套圈游戏吗?前几天我校三(1)班举行了套圈比赛,想不想去看看?

2、 (课件)师说:现在是第一小组的男女生进行比赛,每个人套15个圈。第一场单人赛开始了,男生一号队员进场(音乐,情境。)他套中几个?(7)再来看女生1号队员,(音乐。)套中几个?(4)这场比赛几个男生?几个女生?谁套得准一些?男同学为我们男生鼓鼓掌。再来看第二场双人赛,(比赛的音乐)四人同时走出来,同时套,这次比赛,几个男生?几个女生?谁套得准一些?为什么?(7+2=98+5=13)女同学为我们女生鼓鼓掌。第三场团体比赛开始了,哇,来了这么多同学,男生有几个人?女生有几个人?谁获胜?谁先说就先鼓掌。鼓掌完了问:你们男生有没有意见?有意见。(如果学生说因为,老师赶紧引过来你直接告诉大家你有没有意见?你认为哪个队获胜?)看来这场比赛情况比较复杂,怎样可以知道哪个队获胜呢?这就是我们今天要研究的内容。(三次比赛的数据不能一样。)(套圈图淡去,统计图渐出。)

10、《平均数》教学设计

以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上,整理了平均数的教学设计,希望可以帮助到老师。

[教学目标]

1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

[教学重、难点] 理解平均数的意义,学会求简单数据的平均数。

[教具准备]多媒体课件等

[教学时间]1 课时

[教学过程]

一、创设情境,提出问题

(屏幕出示)看,三(1)班的几个男女生正在进行套圈比赛呢,他们每人套了 15 个圈,老师用两幅统计图分别表示出了男生和女生套中的个数。

从图中你得到了哪些信息?

二、自主探究,理解新知

1、初步引出平均数

问:你们的眼睛真亮!那根据这些信息你知道男生套得准一些还是女生套得准一些吗? 猜猜看。

师:到底事实情况怎样?我们必须想个方法来说服对方,请你们开动脑筋, 有了想法后小组内相互交流。

小组讨论,教师行间巡视。

问:有结果了吗?谁来说一说你的想法?你认为应该比什么?

师:你觉得哪一种比法更加合理?说明你的理由。 指名回答。

师: 在刚才的讨论中, 我们明白了参加比赛的人数不一样多, 算总数不好比, 也不公平,就不能用这种方法。只有求出男生平均每人套中的个数,女生平均每 人套中的个数,才能一比胜负。

(出示:男生平均每人套中的个数、女生平均每人套中的个数)

2.移多补少法。

⑴(出示:男生统计图)问:你能看图说说男生平均每人套中多少个圈呢?小组里讨论一下。

(预设 :把张明的 9 个移 1 个给陈晓杰,1+6=7,张明还有 8 个,再移 1 个 给李小钢,1+6=7,最后大家都是 7 个。(生答,师演示) )

师:通过把多的移一些补给少的,使每个人都一样多。我们给这种方法起个 名字。

⑵你能用移多补少法看出女生平均每人套中的个数吗?(生答,师演示)

3、先合再分

⑴提问:还有其它办法得到男生平均每人套中多少个吗?

(生答,师演示) 会列式吗?板书:6+9+7+6=28 (个),28÷4=7(个)

师:这种方法是先怎样,再怎样的?也给它取个名字“先合再分”。这里的 28 指的是什么?为什么要除以 4?不管用什么方法,最后都求出了男生平均每人套中 7个圈,反映了男生套中的平均水平。

⑵.求女生平均每人套中的个数。

(出示:女生统计图)那么你会计算女生平均每人套中多少个圈吗?自己算一算。 (指名答,师板书)10+4+7+5+4=30(个) ,30÷5=6(个)。

问:刚才男生中用总数除以 4,到了女生中,怎么就除以 5 了呢?(因为女 生是 5 个人) 通过算平均成绩, 现在你能比较出是男生套得准一些还是女生套得准一些了吧?(出示:答:男生套得准一些。)

4、揭示课题。

(出示男、女生统计图)同学们,刚才我们算出男生每人套中 7 个,这个 7 就是 6、9、7、6 这一组数据的平均数。(出示课题:平均数)这个 6 是哪几个数的平均数呢?

5、理解平均数的范围。

(1)比较。 男生实际上是不是每个人都套中 7 个?把这 7 个跟男生实际套中的个数比一比,哪些人套中的个数比 7 个多?哪些人套中的个数比 7 个少? 女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、联系生活,灵活运用

学习了平均数能为我们解决一些生活中的问题吗?让我们继续研究。

1、想想做做第1题。

指名口答。 师小结:当数据较少而且数据之间相差不大时,适合用“移多补少”的方法 来算平均数。

2、想想做做第2题。

(课件出示) 快来解决小丽的问题吧。

问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?想一想,你能不能估计出这三条丝带的平均长度在( )cm——( )cm 之间?当数据之间相差较大时,适合用先求和再平均分的方法。 学生尝试练习后评讲。 (实物投影)

3、想想做做第3题。

(课件出示) 看,篮球队员们的比赛多么激烈呀,你能解决这里的数学问题吗?

师:我们对平均数又有了更深的了解,让我们用所学的知识一起来帮帮小明 吧!

4、95页练习九第1题。

怎么理解“平均水深110厘米”?想看看这个池塘水底下的真实情形吗?(出 示池塘水底)看来,认识了平均数,对于我们解决生活中的问题还真有不少帮 助呢。

四、全课总结

今天学习了平均数,静静地想一想,你有哪些收获?

总结:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望大家在生活中学会利用平均数解决问题。

五、拓展延伸

1、师:小玲参加歌唱比赛这是5位评委给她打得分,你能算算她的平均得分是多少吗?

学生自主计算,全班汇报。

2、出示打分规则,再次计算

11、四年级数学下册《平均数》教学设计

四年级数学下册《平均数》教学设计

作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的四年级数学下册《平均数》教学设计,欢迎大家分享。

教学内容:人教版四年级下第90—91页例1、例2及相关内容。

教学目标:

1、使学生理解平均数的含义,知道平均数的求法。

2、了解平均数在统计学上的意义。

3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

教学重点:理解平均数的意义,掌握平均数的方法。

教学难点:理解平均数的意义。

教、学具准备:课件、题卡、磁扣等。

一、 导入

同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

二、 讲授新知

1、探究平均数的方法

师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

师:大家看,他们每人各运了几个球?

师:请同学蜜察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

生:男生成绩好。女生总数12,男生总数15。

师:对,我们比较总数,可以看出男生队成绩更好。

师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

生:4.

师:用4表示可以吗?

生:可以。

师:男生队用几表示呢?

生:5.

师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

生:小组合作。

师:哪个小组愿意派代表汇报一下?(只出示女生的)

生:女生队2号最多,给1号2个,给3号1个。

师:结果怎样呢?

生:让他们变得同样多。

师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

师:大家听清楚了吗?谁愿意到黑板上摆一摆?

生:移多补少演示。

师:大家同意吗?

师小结:在总数不变的前提下,我们把多的`匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习这平均数的知识。那么2、7、3这组数据的平均数就是4。

师:你们用移多补少的方法表示出男生队的平均成绩吗?

生:到前面来演示。

师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

生:列算式。学生到黑板上演示。

(4+5+6)÷3

=15÷3

=5(个)

师:你是怎么想的?(写的同学说说自己的想法)

生:用男生队运球的总数除以3,就是每人平均运5个球。

师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

师:你能用合并平分的方法,求出女生队的平均数吗?

生:汇报

师:现在我们来说一说哪一个队成绩更好呢?

生:男生队

师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

2、平均数的作用

师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

生:公平,再观察一下,他们为什么不同意。

不公平,人数不同。

师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

生:4.

师:你们怎么这么快就知道了呢?

师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

生:12个。

师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

3、平均数的性质

师:请大家观察女生队的成绩

我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

生:4比7少3个,比2多2个,比3多1个。

师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

生:不是

师:平均数5和男生队每个人实际运球数比较一下。

生:平均数5和2号选手实际运球数一样多。

师:那么这个5和2号的成绩5表示的意义一样吗?

生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。

1、请你估一估小强拍球的平均成绩,可能是多少下?

2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

生汇报:

师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

2:计算统计平均数的作用,在于衡量事物要均等。

所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

三、习题

1、课件出示“小小”冷饮店习题。

2、水深。

四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

12、四年级数学下册《平均数》教学设计

作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的四年级数学下册《平均数》教学设计,欢迎大家分享。

教学内容:人教版四年级下第90—91页例1、例2及相关内容。

教学目标:

1、使学生理解平均数的含义,知道平均数的求法。

2、了解平均数在统计学上的意义。

3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

教学重点:理解平均数的意义,掌握平均数的方法。

教学难点:理解平均数的意义。

教、学具准备:课件、题卡、磁扣等。

一、 导入

同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

二、 讲授新知

1、探究平均数的方法

师:紧张的'比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

师:大家看,他们每人各运了几个球?

师:请同学蜜察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

生:男生成绩好。女生总数12,男生总数15。

师:对,我们比较总数,可以看出男生队成绩更好。

师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

生:4.

师:用4表示可以吗?

生:可以。

师:男生队用几表示呢?

生:5.

师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

生:小组合作。

师:哪个小组愿意派代表汇报一下?(只出示女生的)

生:女生队2号最多,给1号2个,给3号1个。

师:结果怎样呢?

生:让他们变得同样多。

师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

师:大家听清楚了吗?谁愿意到黑板上摆一摆?

生:移多补少演示。

师:大家同意吗?

师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习这平均数的知识。那么2、7、3这组数据的平均数就是4。

师:你们用移多补少的方法表示出男生队的平均成绩吗?

人教版平均数教学设计一等奖

生:到前面来演示。

师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

生:列算式。学生到黑板上演示。

(4+5+6)÷3

=15÷3

=5(个)

师:你是怎么想的?(写的同学说说自己的想法)

生:用男生队运球的总数除以3,就是每人平均运5个球。

师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

师:你能用合并平分的方法,求出女生队的平均数吗?

生:汇报

师:现在我们来说一说哪一个队成绩更好呢?

生:男生队

师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

2、平均数的作用

师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

生:公平,再观察一下,他们为什么不同意。

不公平,人数不同。

师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

生:4.

师:你们怎么这么快就知道了呢?

师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

生:12个。

师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

3、平均数的性质

师:请大家观察女生队的成绩

我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

生:4比7少3个,比2多2个,比3多1个。

师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

生:不是

师:平均数5和男生队每个人实际运球数比较一下。

生:平均数5和2号选手实际运球数一样多。

师:那么这个5和2号的成绩5表示的意义一样吗?

生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。

1、请你估一估小强拍球的平均成绩,可能是多少下?

2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

生汇报:

师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

2:计算统计平均数的作用,在于衡量事物要均等。

所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

三、习题

1、课件出示“小小”冷饮店习题。

2、水深。

四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

13、《平均分》优质教学设计

一、教学目标:

1、培养学生小组学习的能力。

2、学会运用平均分。

3、在具体情境与实践活动中,建立“平均分”的概念。

4、让学生充分经历“平均分”的过程,明确“平均分”的含义。

5、初步认识“平均分”

6、引导学生感受“平均分”与实际生活的联系

7、培养学生的探究意识和解决问题的能力。

二、教学重点:

理解掌握平均分的含义,方法。

三、教学难点:

掌握平均分的方法。

四、教学准备:

各种食物若干。

五、教学过程:

(一)、创设情境,感受“平均分”

(1)、今天老师给你们带来了一些小礼物。老师要送给你们。请动手把帖分给小组里的每一位同学,要求把帖分完。(每一组的帖的数量不相同)

(2)、各小组动手操作

(3)、各小组汇报情况,教师板书。

(二)、观察问题

(1)、请小朋友观察各小组分的结果,你发现了什么?

(2)、学生观察汇报。

(3)、从观察中我们发现有些组分的同样多,你们能给这样的分法取个合适的名称吗?

(4)、学生自己取名。

(三)、出示课题

(1)、小朋友取的名称都很好,这些在数学上我们把每份分的同样多叫作平均分。

写下板书:平均分

(2)、小朋友再说说刚才哪些组是平均分,哪些组不是平均分。

(3)、刚才不是平均分的小组你们有什么办法使它平均分?

(4)、学生交流、汇报

(设计意图):让学生在分帖的情境中自主发现平均分。尊重学生的学习自主性、创造性。教师引导学生积极思维,通过问题的引申帮助学生认识平均分。

(四)、学习-平均分

1、教学例2:把10个卡片平均分成5份,怎样分?

(1)、论分配方案。

(2)、各小组动手分一分。

(3)、学生汇报分法。

(4)、你喜荒种分法?为什么?

2、分一分:把8根小棒平均分成4份,每份应是多少根?(学生动手分一分)

3、完成课本第14页的做一做,把12瓶矿泉水平均分成3份。

(让学生圈一圈,并说出自己的分法。)

(设计意图):体现分法的多样化;开放题拓展知识,开拓学生思维。

(五)、应用拓展,理解平均分

1、练习三第2题。

(1)、肯定第二种分法是符合题义的分法。

(2)、引导学生观察第3种分法是不是平均分?要使它符合题意应该怎样做?

(3)、学生交流讨论汇报。

2、实践活动:插花活动

3、列举生活中平均分的实例。

(设计意图):从多方面加深学生对平均分的认识;开放性的活动使学生多角度认识平均分,为以后学习有余数的除法打下基础。

六、教学结束:

学了这节课你有什么想法和收获?请同学们写出来。

14、《平均分》优质教学设计

教具、学具准备:

教科书第12页准备春游食品情境放大图或课件;按例1内容,让学生准备实物卡片,准备10张正方形卡片、15个○卡片、20根小棒。

教学过程:

一、准备

1.出示准备春游食品的情境图。以小精灵聪聪的身份说二(1)班明天要去春游。小朋友正忙着准备春游食品呢!我们来看一看,他们都准备了哪些食品。

2.让学生观察画面,并请学生说一说了解到的情况。

二、新课

1.例1,引入“平均分”。

谈话:我们来帮助二(1)班小朋友准备春游食品好吗?!请各组为二(1)班的5位小朋友分配春游食品。

(1)讨论分配方案。突出每种食品“应该每份同样多”。

(2)动手分一分。

分好后,请各组推代表展示分配结果。

(3)让学生观察各组为二(1)班小朋友准备的春游食品,发现:每份中的各种食品同样多。

说明:每份分得同样多,叫平均分。

2.巩固“平均分”。

(1)出示教科书第13页“做一做”。

请学生看题,并说一说题意。

特别请学生说一说“平均分成5份,是什么意思。”

(2)让学生用10张正方形卡片代替面包,分一分。

分好后,同桌检查一下:是不是分成了5份,每份是不是同样多。然后,按分的结果填空。

3.尝试平均分物品。

(1)按教科书第14页例2提出:把15个橘子平均分成5份。

(2)请各组用实物图卡片(或○卡片)分一分。

(3)交流。请学生说一说,怎样分的,分的结果。

(4)教师归纳平均分的方法:把15个橘子平均分成5份,可以每次每份分一个或几个。最后,要使每份分得同样多。

4.立进行平均分。

(1)让学生用小棒代替矿泉水,立完成把12瓶矿泉水平均分成3份的任务。

(2)交流。请学生说一说,怎样分的。

三、练习

1.练习三的第1题。

(1)让学生用小棒代替花,动手往3个花瓶里插花。

说明:想怎么插花就怎么插。最少设计两种插花的方案。

(2)交流。请学生展示自己最得意的插花方案,并说出自己的想法。

(3)评价。让学生相互评价,欣赏自己的作品。

然后,请学生选出每瓶插同样多枝花的插花方案。

强调:这几种插花方案,都是把花平均插进3个花瓶里。

2.练习三的第2题。

先让学生立完成,再组织交流。

3.练习三的第3题。

(1)让学生根据题意准备学具卡片。

请学生说一说,准备了几个“梨”,为什么。

(2)让学生立完成把梨平均放进4个盘里的任务。

(3)交流。请学生说一说分的过程和结果。

四、总结

1.请学生回忆:这节课学习了什么知识?

2.教师总结:这节课我们知道了什么叫平均分,还学会把一些东西平均分成几份。要把一些东西平均分成几份,可以每次每份放一个,也可以每次每份放两个……最后,每份分得同样多。

15、《平均分》优质教学设计

一、教学目标:

1、培养学生小组学习的能力。

2、学会运用平均分。

3、在具体情境与实践活动中,建立“平均分”的概念。

4、让学生充分经历“平均分”的过程,明确“平均分”的含义。

5、初步认识“平均分”

6、引导学生感受“平均分”与实际生活的联系

7、培养学生的探究意识和解决问题的能力。

二、教学重点:

理解掌握平均分的含义,方法。

三、教学难点:

掌握平均分的方法。

四、教学准备:

各种食物若干。

五、教学过程:

(一)创设情境,感受“平均分”

(1)今天老师给你们带来了一些小礼物。老师要送给你们。请动手把帖分给小组里的每一位同学,要求把帖分完。(每一组的帖的数量不相同)

(2)各小组动手操作

(3)各小组汇报情况,教师板书。

(二)观察问题

(1)请小朋友观察各小组分的结果,你发现了什么?

(2)学生观察汇报。

(3)从观察中我们发现有些组分的同样多,你们能给这样的分法取个合适的名称吗?

(4)学生自己取名。

(三)出示课题

(1)小朋友取的名称都很好,这些在数学上我们把每份分的同样多叫作平均分。

写下板书:平均分

(2)小朋友再说说刚才哪些组是平均分,哪些组不是平均分。

(3)刚才不是平均分的小组你们有什么办法使它平均分?

(4)学生交流、汇报

(设计意图):让学生在分帖的情境中自主发现平均分。尊重学生的学习自主性、创造性。教师引导学生积极思维,通过问题的引申帮助学生认识平均分。

(四)学习-平均分

1、教学例2:把10个卡片平均分成5份,怎样分?

(1)论分配方案。

(2)各小组动手分一分。

(3)学生汇报分法。

(4)你喜荒种分法?为什么?

2、分一分:把8根小棒平均分成4份,每份应是多少根?(学生动手分一分)

3、完成课本第14页的做一做,把12瓶矿泉水平均分成3份。

(让学生圈一圈,并说出自己的分法。)

(设计意图):体现分法的多样化;开放题拓展知识,开拓学生思维。

(五)应用拓展,理解平均分

1、练习三第2题。

(1)肯定第二种分法是符合题义的分法。

(2)引导学生观察第3种分法是不是平均分?要使它符合题意应该怎样做?

(3)学生交流讨论汇报。

2、实践活动:插花活动

3、列举生活中平均分的实例。

(设计意图):从多方面加深学生对平均分的认识;开放性的活动使学生多角度认识平均分,为以后学习有余数的除法打下基础。

六、教学结束:

学了这节课你有什么想法和收获?请同学们写出来。

16、《平均分》优质教学设计

在《平均分》这节课的教学过程中,我结合学生的生活实际设计了各种情境,为学生提供了充分的实践机会。学生学得主动,课堂气氛热烈,知识获得与情感体验同步进行。

反思本课的教学,我有以下几点认识:

1、注重学生对平均分的感受和体验。

在教学中,我创设了分帖的情境,让学生自由地分,学生汇报,老师板书展示出了好几种不同的分法。为了从中引出平均分,我提了一个问题:你们最喜荒种分法呢?为什么?很多学生马上就把是平均分的分法找出来了。学生说了自己的理由,与平均分的概念相去不远,我马上用比较规范的语言归纳出了平均分的概念。然后,让生再次观察黑板上的分法,汇报交流哪些是平均分,哪些不是平均分。

2、注重知识的二次利用。

学生经过一次实际操作,对“平均分”有了初步的理解,再进行“分橘子”,大多数已能立完成这一任务,学生提出了很多平均分的方法,需要师生共同探究方法的化。在后面的闯关游戏、巩固练习中,通过让学生说一说,把不是平均分的改成平均分,通过对比的方法,让学生明确“平均分”与“不是平均分”的区别,进一步加深学生对“平均分”概念的理解。

3、渗透了解决问题策略的多样性。

在闯关游戏、巩固练习时,我设计了四关,通过“判一判”、“填一填”、“画一画”、“圈一圈,分一分”形式多样的习题,既考查学生对平均分的掌握程度,渗透解决问题策略的多样性,又培养孩子多方位思考和解决生活中实际问题的能力。

总之,本节课我给学生创设了良好的活动空间,让学生充分经历平均分物的过程,把物体平均分现象展示给学生,把生活和数学相联系,在学生感受“同样多”的基础上概括出“平均分”的概念,明确“平均分”的含义,并在头脑中初步形成“平均分”的表象,为认识“除法”积累丰富的感性认识。在此基础上认识除法,才能收到水到渠成、事半功倍的效果。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除