数学五年级下册《折线统计图》教学设计一等奖
1、数学五年级下册《折线统计图》教学设计
知识背景和目标定位:
《折线统计图》是义务教育课程标准实验教科书(人教版)五年级下册的内容,它是在学生已经掌握了收集、整理、描述、分析数据的基本方法,会用统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题;了解了统计在现实生活中的意义和作用,建立了统计的观念的基础上,又一次认识一种新的统计图。
基于以上认识,把《折线统计图》的教学目标定位于以下几点:
1、认识折线统计图,并知道其特征。
2、能从折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的推测。
3、通过对数据的简单分析,进一步体会统计在生活中的意义和作用。
案例描述:
一、创设情境。
1、观看科技展录像。看到这些画面,你想说点什么?
2、为了使大家能更清楚地了解和分析这几年参观科技展人数的情况,你认为可以用哪些方法来表示参观人数呢?
3、课前我已收集了近几年来参观科技馆的人数,并把它制成了这样一张统计表。仔细观察,你能从统计表中了解到什么信息?
参观科技展人数统计表 20xx年4月
年份 | 20xx | 20xx | 20xx | 20xx | 20xx | 20xx | 20xx |
人数(万人) | 24 | 18 | 30 | 36 | 36 | 54 | 60 |
出示问题:在相邻的两个年份中,( )年到( )年参观人数增加最快。
你怎么得到这个答案的?你是用什么方法知道的?(计算)
4、能不能不通过计算,换一种方式就可以直观得看出20xx年到20xx年人数增加最快呢?(条形统计图)
但是,我在科技馆发现了他们用这些数据制成了这样的一幅统计图。(课件折线统计图)
二、探究新知
1、初步感知
(1)这幅统计图中,横轴表示?纵轴表示?
(2)每年的参观人数在这幅统计图上都找到吗? 谁来指着说一说。
(3)这幅统计图是通过什么来表示出每年的参观人数的?(板书:点:数量多少)
(4)思考:目前这幅统计图也只是反映出了统计表里的信息,还不能解决刚才问题?
看来这个问题有必要我们研究研究。我们不妨带着下面三个问题来看一看。仔细观察,立思考。然后再把你的想法在小组内说一说。
2、深入探究
(1)哪年参观人数最多?哪年最少?
(2)哪年到哪年人数没有变化?哪年到哪年人数增加最快?
分析:回到前面的问题,在统计表中想知道参观人数增加最快的是哪年到哪年,是通过什么方法得出的?那现在能直观的看出来了吗?(通过线的陡度来看)
板书:平—不变
陡—快
(3)借助这幅统计图,体会一下这几年参观人数整体变化情况。你是怎么看出的?
让学生看整条线段,感受整体趋势。
课件演示整体上升的过程。
你们是通过什么看出来的上升的趋势的?(板书:线)
总结:通过折线的起伏,来反映出数量的增减变化。这正是这种统计图的特点,不仅能够看出数量多少,而且能够更清楚地看数量的增减变化情况。(补充板书:增减变化)。
3、为统计图起名字
你知道这种统计图叫什么名字吗?让学生根据这幅统计图的特点,自由起名。(板书课题:折线统计图)
4、预测
能不能根据这幅折线统计图来猜想一下,20xx年会有多少人来参观?
总结:同学们,这只是一种猜测,不管是多是少,都有可能,要想知道究竟有多少人来参观,还要年底再作一次调查。
5、感知生活中的折线统计图。
我们已经对折线统计图已经有了一定的认识,想想,生活中你还从哪儿见过折线统计图?(报纸上、股市上、父母单位、电视里……)
三、实践应用。
1、分析折线统计图
出示马鞍山师范附小四年级春季收费标准统计图,从图中你可以获得哪些信息?有什么想说的?
总结:全国在义务教育阶段,开始免收学杂费了,这项是真正惠及到咱们千家万户的好事、实事,使得大批因家庭经济困难辍学儿童能重返校园,是义务教育的一座新的里程碑。
2、聪聪、明明两人患病期间体温变化的统计图
请学生当小医生,分析一下聪聪和明明体温变化情况。
3、“小华学习了折线统计图,觉得折线统计图的优点很明显,就去文具店作了调查,并绘制了一幅统计图。请你认真观察分析这幅折线统计图,你发现了什么?”(不同文具的销售情况)
(1)让学生体会到若描述的是不同事物,则需要制条形统计图;若描述同一事物的变化趋势,则制成折线统计图。
(2)如果想让它合理,怎么在这张统计图上作一些简单的修改?(改成条形统计图)
(3)做完这个问题后呢,就给咱们带来了一个新的问题:在什么情况下,绘制折线统计图,在什么情况下绘制条形统计图,这个问题其实是以后要研究的内容,你们刚才的.发现已经很了不起了。
四、拓展。
(课件图文并茂出示)探究我国历史,于上古时代已能看见统计图理念的身影。周易系辞记载“上古结绳而治”,事大,大结其绳,事小,小结其绳,显示已使用“分组”的观念区分大、小事,并运用实体的图像表达所观察到的事象。
到商汤推行井田制度,把地划为九块,形如井字,八家各分一块为私田,中为公田,显见井田制度已略具统计图之轮廓。
到宋代,南宋史学家郑樵的图谱思想等,则与现代统计图表的制图原则相近。
至清朝,统计图已广泛的制作与运用,包括农工商统计图、交通统计图及教育统计图等。至今,统计图已广泛用于生产生活,也演变出形式各异的统计图。除了我们已学过的条形统计图、折线统计图以外,还有柱形统计图、饼形统计图、面积统计图、雷达统计图等等。
师:孩子,大自然的千姿百态,无穷无尽的变幻,造就了无以计数的物象形态。其实在自然界中也存在天然的统计图,看(课件出示树的年轮)这不正是大自然的杰作吗?
五、教学反思。
我教学复式折现统计图这节统计课的内容,感觉有许多应该改进的地方。
在设计课的时候,我力求做到让孩子们在感知单式折现统计图和统计表的基础上,体会到二者的局限想以及复式折现统计图的优点。复式折现统计图便于比较两个数量的变化情况;便于比较两个数量总体发展趋势和阶段发展情况;同时对发展的数量作出简单的未来发展趋势预测。
本着这样的设计理念,我尽量将课堂设计的内容丰满一些,训练点广泛一些,同时在发现中获取学习数学的乐趣。
但是在设计课的时候我没有备透学生。
首先,学生的课前复习没有做好。
课前,我应该让孩子们做好单式折现统计图的复习,在复习中巩固绘制的方法,技巧。即:描点,标数,连线。毕竟这是四年级的知识,时隔一年时间学生已经将知识遗忘差不多了。另外根据我班学生的实际情况,这节复习课是十分有必要的。如果做好了复习,那么本节课的重难点也一定会得以突破。
其次,对于此类统计学的数学知识,应该给学生准确的数学语言进行描述。
例如:某一数量总体呈现何种趋势;某一阶段呈现什么趋势;波动较大;平稳发展等数学语言进行描述。如果教师能够相机真确引导,学生就不会在课堂中感到无话可说了。课下我问过许多同学为什不举手回答问题呢?他们说,不知道怎么说服清楚。
第三,教师过于相信学优生,导致出现绘图马虎现象没有及时更正。
通过本节课的教学,我又一次清楚的认识到备课更应备好学生,不能单凭自己的“一厢情愿”设计课。要知道,再好的预设,必须考虑学生的实际,考虑学生的接受程度,这样的生成才会精彩。一堂课可以不完成教学任务,但必须让学生在原有基础上得到发展。毕竟我们的课堂不是作秀。平时中求发展才是真正为学生着想。
2、数学五年级下册《折线统计图》教学设计
教学目标:
1.知识与技能目标:通过对比条形统计图和折线统计图,让学生认识单式折线统计图,会绘制折线统计图,会看折线统计图,了解折线统计图既可以表示数量的多少,又可以体现数量变化趋势并对未来进行合理的预测。
2.过程与方法目标:通过观察、比较和合作探究,培养学生的合作意识和实践能力。
3.情感与态度目标:通过对数据的分析,体会统计在生活中的作用和意义.激发学生学习数学的兴趣,引导学生关注生活中的数学问题。
教学重点:
对比条形统计图和折线统计图,认识折线统计图的特点,会看、会绘制折线统计图,并能从图中获取数据变化情况的信息。
教学难点:
掌握绘制折线统计图的方法。
教学过程:
一、创设情景,导入新课。
谈话引入:我家楼脚有一个老大妈,他有两个女儿,大女儿卖冰激凌,二女儿开了精品店卖伞。眼看两个女儿都生活的很充实,可是老大妈却总是不开心。因为雨天她担心大女儿的生意,晴天她又担心二女儿的生意。最近一周,一直在下雨,二女儿的生意越来越好,雨伞的销售量越来越多,二女儿为了更好地经营,她就对雨伞的销售进行了统计。
(出示条形统计图)在这个条形统计图中,我们能得到哪些信息呢?学生发言,复习条形统计图。
师:生活中除了用条形统计图统计外,你们还见过这样的统计图吗?(出示生活中的折线统计图),像这样的统计图,就是我们今天要研究的单式折线统计图。(揭题)
(设计意图):根据学生的生活实际,创设情景,在轻松的谈话中,揭示本节课的主题。)
二、探究新知
(一)师:那刚才我们在条形统计图中得到的信息,你能在折线统计图中找出来吗?让学生讨论分析折线统计图的组成。
师:折线统计图的组成(描述横轴纵轴所表示的对象、单位等)
(二)绘制统计图
1、对应描点
2、依次连线
3、标注数据
(三)折线统计图的特点:
折线统计图的特点:不仅能看出数量的多少,还能清楚的看出数量的增减变化情况。
刚才我们认识了折线统计图,以前学过条形统计图,那么你会灵活选择什么情况下用条形,什么情况下用折线统计图吗?我们一起来看看作业单第一题。
三、巩固练习
同学们都很厉害,能根据实际需要选择合适的统计图。那么老大妈的大女儿也想对她的冰激淋销售情况进行统计,为下一周的进货作准备,同学们说她应该选用什么统计图呢?
生:折线统计图。
师:那哪个同学愿意上来帮助大女儿完成统计图呢?
让学生上来绘制冰淇淋的折线统计图。
师:这个同学手真巧,看来同学们已经掌握了折线统计图的要点,同学们的动手能力让老师很是佩服,那现在我们一起来动手试试作业单第二大题。
展示此题的绘制结果。
科学技术的发展,让同学们接触知识的渠道越来越多,电脑手机都是可以帮助学习的工具,但是随着这些科技产品进入我们的生活,许多青少年的视力也受到了严重的影响,因此老师对我们学校的近视学生人数进行了统计,请同学们按照要求完成作业单第二大题的第二小题。
三、总结
1、课堂小结:
这节课,你有哪些新的收获?(回顾)
(1)绘制统计图
1、对应描点
2、依次连线
3、标注数据
(2)折线统计图的特点:
折线统计图的特点:不仅能看出数量的多少,还能清楚的看出数量的增减变化情况。
2、结束语
师:今天我们大家通过动手、动脑,认识了一种新的统计图----折线统计图,它在生活中的运用是很广泛的。
折线统计图和条形统计图各有特色,我们可以根据实际需要,灵活选择统计图的形式。那么你们回家后,利用今天学习的知识,对自己一学期以来的成绩进行统计,并分析自己的不足之处,制定相应的复习计划,争取在期末中取得更好的成绩。
(设计意图):评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。而在本节课的评价上是侧重放在关注学生在实践活动中的体验上。布置学生回去统计自己的成绩,贴近学生的生活,让他们认识到数学与生活密切相关,同时培养学生学习数学的兴趣。
六、板书设计
单式折线统计图
特点:
步骤:
不仅能反映数量的多少
1、对应描点
还能反映数据的增减变化情况
2、依次连线
对未知数据进行预测
3、标注数据
PAGE
3、二年级数学下册《认识简单的统计表》教学设计
二年级数学下册《认识简单的统计表》教学设计
1.课程标准相关要求:
经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法。
2.教材分析:
本节初步体验数据的收集、整理、描述和分析的过程,并能根据统计图表的数据提出并回答简单的问题,使学生了解统计的意义和作用,初步了解统计的基本思想方法,认识统计的作用和意义,逐步形成统计观念,进而养成尊重事实、用数据说话的态度。
3.学情分析:
上学期学生已经学习了比较、分类,能正确地进行计数,所以认识统计表,能利用统计图表中的数据做出简单的分析,能和同伴交流自己的想法,体会统计的作用对学生来说并不是很难。
学习目标
1、在熟悉的生活情境中交流、合作,亲身经历数据的收集、整理、描述和分析的过程。
2、结合具体的实例,认识简单的统计表,根据统计表回答一些简单的问题。
3、学会与他人合作,积累解决问题的经验,体会数学与生活的密切联系。评价设计
1、自由发言说一说数据收集的方法,完成对目标1的评价。
2、以举手的形式收集数据并将结果用表格的形式展示出来,并回答一些简单的问题完成对目标2的评价。
3、小组合作进行数据的收集、整理,完成对目标3的评价。
学习过程
一、创设情境,引入新课。
同学们,新的学期开始了,学校要给同学们定做校服,有下面4种颜色,出示例1中的四种颜色。选哪种颜色合适呢?(选大多数同学喜欢的颜色。)
怎样知道哪种颜色是大多数同学最喜欢的呢?(可以在全校的同学们中去调查一下;全校学生有那么多,怎样调查呢?我觉得可以先在班里进行调查;还可以现在组内进行调查。)
你们真聪明,你们刚才说的调查,其实也就是进行统计。揭示课题:统计。要统计出喜欢每种颜色的学生人数,首先要进行数据的收集过程。下面我们就一起来调查喜欢每种颜色的学生人数。
二、亲历统计过程,体会收集数据的形式和过程。
1、收集数据。
在这四种颜色中,你最喜荒种颜色?为什么?要想知道喜荒种颜色的同学最多?我们应该怎样调查呢?
我们可以采用举手、起立、画“√”、“○”作记号等很多方式来收集数据。但是这些方式中举手既快速又简捷。下面我们就用举手的方式来进行调查。请听规则:每个人只能选一种颜色,每当老师说出一种颜色时,喜欢这种颜色的同学就举手,好吗?一个人能选两种颜色或不选吗?为什么?(如果选一种以上就重复了,而不选又遗漏了)
对,收集数据有很多不同的方式,但是无论采用哪种方式调查,都要做到不重复、不遗漏,也就是说你只能选择一次。那好,现在我们开始举手调查。
2、 整理数据。
刚才同学们已经通过举手这种方式选出了自己喜欢的颜色了,老师也知道了,但是负责定制校服的领导还不知道,那该怎么办呢?
你们真会想办法。那我们现在再举一次手,在这张表中颜色红色黄色蓝色白色人数统计出喜欢每种颜色的人数,好吗?
喜欢红色的请举手,请一个学生数出人数,老师记录在统计表中。其余三种颜色采用同样的方式进行统计。
3、认识简单的统计表。
同学们,刚才我们将统计后的结果用表格的`形式展示出来,这种表格就是简单的统计表。仔细观察统计表。
颜色红色黄色蓝色色人数96158你看懂什么?
4、根据统计表解决问题。
这张统计表的第一行表示的是同学们最喜欢的颜色,第二行表示的是最喜欢的每种颜色的人数。统计表可以直接看出各种数据的多少,同学们可以根据这些信息分析和解决一些问题。下面大家就请你根据统计表中的信息解决下面的问题。
(1)全班共有()人。
要想知道全班有多少人,应该把喜欢这四种颜色的人数全部合起来,即9+6+15+8=38(人)所以全班共有38人。(你真聪明,谁能解决第二个问题?)
(2)喜欢( )色的人数最多。
比较喜欢每种颜色的人数,19>9>8>6,通过对比得出:喜欢色的人数最多。(你真是个会思考的孩子。那你能解决最后这个问题吗?
(3)如果这个班定做校服,选择( )色合适。全校选这种颜色做校服合适吗?为什么?
全班喜欢色的人数最多,所以如果这个班定做校服,选择蓝色合适;但是全校选择这种颜色做校服不一定合适,因为全校学生不一定喜欢色的最多,应该再调查其他班级同学喜欢什么颜色的人数最多,最后比较全校学生喜荒种颜色的人数最多,从而确定全校学生做哪种颜色的校服。(你们真的很厉害,会帮助领导分析并解决问题,相信学校的领导一定会采纳你们的意见)
三、巩固练习。
同学们,下面老师请你们用刚才学到的知识解决数学书第4页练习一的相关问题,你们敢挑战吗?
1、完成练习一的第1小题。
调查本班同学最喜欢参加哪个课外小组,并解决问题。(先调查,完成统计表后,再立解决问题,最后汇报)
2、完成练习一的第2小题。
调查本班同学最喜荒一个季节,把结果填入下表。(先调查,完成统计表后,再立解决问题,最后汇报)
四、归纳总结。
同学们,通过今天的学习,你有什么收获?学生交流后,教师总结。同学们,今天这节课我们学习了统计的相关知识,知道在统计时要先收集数据,而收集数据有举手、起立、画记号等很多方式,但无论选择哪种方式都要做到不重复、不遗漏。还知道收集完数据后要对数据进行整理,将数据进行整理记录填入的表格叫做统计表。统计表可以告诉我们很多信息,并帮助我们分析和解决生活中的实际问题。
五、板书设计
收集数据、认识简单的统计表
4、五年级数学下册《包装的学问》教学设计
教学目标:
1、借助生活中长方体表面积的计算,培养学生的观察能力及用数学知识解决问题的意识。
2、在摆、讨论、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方式,发展学生的空间观念。
3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化,发展优化思想。
4、培养学生的合作探究精神及创新意识。
教学重点:让学生通过动手操作,探究感悟,加上适当的课件演示,能找出各种包装方案中的最优方案,理解多个相同长方体物体叠放时的最优策略。
教学难点:多个相同长方体叠放后,使其表面积最小的最优策略的基本过程和方法。
教学准备:课件、报纸、小组活动记录表等。
一、创设情境,激发探究欲望
布鲁纳指出:“学习的最好刺激乃是对所学材料的兴趣。”本节课,我创设了“给灾区孩子送礼物,包装课本”的情境贯穿课的始终。从学生已有的生活体验入手,提出现实的、有意义的学习内容,激发学生的学习兴趣,调动学生的学习积极性,同时让学生感受数学就在身边。
二、动手操作,探究新知
1,创设情境:
师:同学们刚刚过完了五一劳动节对么,谁来说说你是怎么样过的那?为了让这个劳动节过的更有意义,学校大队部在劳动节前夕,组织了一次与对口学校的手拉手爱心捐书活动,在这次活动中,咱们班级的同学表现的非常突出。现在大队辅导员老师还想请同学们帮忙给每本书包装一下,送到对口学校的孩子们手中。如果你来包装这本书,需要考虑那些因素。
师:送礼物前我们会把礼物包装起来,怎样才能把礼物包装得既美观又节约呢?我们今天就从节约的角度来研究一下包装中的学问。
板书:包装的学问
2,动手操作,找出规律
师:请大家拿出我们准备的书和报纸出来
(1)小组活动要求:
A.拿出3本同样的书(语文书,数学书和科学书)。
B.思考:可以怎样包装?有几种包装方法?
C.不用计算,你能知道哪一种方案最节约包装纸?为什么?
(2)师:如果把三本书包装在一起,有几种包装形式?接口处不计的话,怎样包装最节约包装纸?请同桌一起合作,摆一摆,量一量,看一看,共同解决。
指2生前面摆出不同的包装形式,列式计算
反馈,纠错,还有没有不同的方法
通过同学们的计算和对图形的观察,哪种包装形式最节约包装纸呢?同座交流你的想法。
小结:一般情况下,把最大的面重叠在一起,最节约包装纸。
3、验证:
师:假设这3本书的长宽高分别是15厘米、0.6厘米、24厘米,请大家计算一下三种包装情况的用纸情况。(表面积分别是多少?)这3种包装分别用多少包装纸?
生立做,汇报
通过计算我们又进一步验证了刚才的结论,怎样包装最节约包装纸那?
再次总结:重合的面积越大,表面积越小,就越节省包装纸 三、拓展延伸,巩固新知
1、师:大家现在听歌都用的`是些什么播放的啊?(手机、电视、DVD)。
科普一下磁带这个学生的爸爸妈妈小时候听歌的历史。
问:现在我想把4盒磁带包装在一起,你能利用刚才学会的知识,算算怎样包装节省包装纸么?
生:把四盒磁带最大的6个面重叠在一起,最节省包装纸生:把4个大面和4个中面重叠在一起,最节省包装纸师:请同学在组内讨论一下。
达成共识:在长、宽、高的数值比较接近时,上述这种包装比较节省。
在包装物体的时候,除了要把最大的面重叠在一起,还要把尽可能多的面重叠在一起,这样节省包装纸
2、如果我要把全班的书收上来放到一起打成一包,如何包装合适?(让一名学生到前面实际摆放,其他同学观察、思考)让学生在体验中再次感悟:
在包装物体时,除了要考虑包装纸的节省外,还要考虑到美观,携带方便等特点。
三、回顾整理,反思提升
师:包装除了与节约包装纸有关,你认为还与什么有关呢? 生:环保、便于携带??
师小结:包装的学问还有很多,这就需要大家不断的去发现、去探索、去研究。
5、五年级数学下册《质数和合数》教学设计
五年级数学下册《质数和合数》教学设计
教学内容:质数和合数(教材第23、24面、25面)
教学目标:
1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:质数和合数的意义。
教学难点:正确判断一个常见数是质数还是合数。
教学过程:
一、创设情境,激趣导入
1、同学们,听说过“歌德巴赫猜想”吗?这是一个著名的数学难题,被称为“数学王冠上的明珠”。
2、课件显示:任何大于2的偶数都可以写成两个质数的和。
3、这就是著名的“歌德巴赫猜想”。要想解决这个问题,首先就要知道什么是“质数”。你们知道什么样的数是质数吗?引导学生积极思考,并在此基础上导入新课学习。下面,我们来一起观察。
二、反馈预习,探索研究
1、学习质数和合数的概念。
找出1—20各数的因数。看看它们的因数的个数有什么规律。
(1)初步观察:
组织学生一个一个地给这些数找因数并请写出1—20各数的因数。
每个数的`因数的个数是否完全相同?
按照每个数的因数的多少,可以分几种情况?
可分为三种情况:(让学生填)
只有一个因数
只有1和它本身两个因数
有两个以上的因数
1
2、3、5、7、11、13、17、19
4、6、8、9、10、12、14、15、16、18、20
(2)观察思考:
只有两个因数的,如:2、3、5、7、11、13、17、19。这几个数的因数有什么特征?
4、6、8、9、10、12、14、15……这些数的因数与上面的数的因数相比有什么不同?
分成小组讨论交流,并汇报讨论结果。教师归纳:
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
注意:1既不是质数,也不是合数。
2、质数、合数的判断方法。
问题:我们应该怎样去判断一个数是质数还是合数?
学生思考,讨论交流并汇报。(根据因数的个数来判断)
(1)完成教材第23面“做一做”,
(课件显示)“做一做”:判断下列各数中哪些是质数,哪些是合数?
17 22 29 35 37 87 93 96
(2)提问:你是怎样判断的?(找出每个数的因数的个数)
(3)提问:判断是质数还是合数,是不是把所有的因数都找出来呢?(不必要,只要发现这个数除了1和本身以外还有其它的因数,不管有几个,它都是合数)
3、课件显示教材第24面例题1:找出100以内的质数,做一个质数表。
(1)提问:如何很快的制作一张100以内的指数表?
(2)按质数的概念逐个判断?也可以用筛选法。
(3)介绍筛选法:首先排除1,因为1既不是质数,也不是合数。再排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。这样剩下的就是100以内的质数。
课件演示筛选过程,并最终显示:100以内的质数。(略)小结:判断一个数是不是质数,除了用刚才介绍的方法外,还可以查质数表判断,如100以内的质数表。
三、巩固练习:
1、完成教材第25面第2、3两题
2、学生完成后集体讲评。
第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。
同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。
四、课堂总结:
师生共同总结以下内容:
1、什么叫质数?什么叫合数?它们之间最大区别是什么?
2、可以用哪些方法判断质数和合数?
3、你还知道些什么?从中掌握了哪些学习方法?
板书设计
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数。
一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
注意:1既不是质数,也不是合数。
作业设计
完成教材第26面(练习四)第4、5两题
教学心得
6、五年级数学下册《最小公倍数》教学设计
教学内容:
教材第88、89页的内容及第91页练习十七的第1、2题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:理解两个数的公倍数和最小公倍数的意义
教学难点:自主探索并总结找最小公倍数的方法.
教学具准备:多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:小组合作谈话法
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点。
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数。
(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示。
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数。
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,…
12,24,
4和6的公倍数:
5.引出例1。
前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。
(1)操作探究。
学生任意选择操作方式。
①用长方形学具拼正方形。
②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
(2)反馈并揭示意义。
①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。
③正方形边长还有可能是几?你是怎样知道的?
④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。
思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)
⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。
三、巩固应用,内化提高
(1)画一画,说一说。
小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?
引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。
(2)完成教材第89页的“做一做”。
学生立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的`公倍数。
(3)立完成教材第91页练习十七的第2题。
(4)完成教材第91页练习十七的第1题。
指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。
四、回顾整理、反思提升。
通过今天的学习,你有什么收获?
本节课我貌同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
板书设计:
最小公倍数(一)
4的倍数:4、8、12、16、20、24、28、36……
6的倍数:6、12、18、24、30、36……
4和6的公倍数:12、24、36……
4和6的最小公倍数:12
教后反思:
优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。
不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。
7、五年级数学下册《因数与倍数》教学设计
五年级数学下册《因数与倍数》教学设计
教学内容:
《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?
学生回答。
师:哦,老师知道了。XXX是XXX的好朋友。如果他这样介绍:XXX是好朋友。能行吗?
生:不行,这样就不知道谁是谁的好朋友了。
师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。
二、探索交流,解决问题
1、师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,
我们知道1,2,3,4,6,12都是12的因数。
师出示:
1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
12 × 5=60 45 ÷ 3=15
11 × 4=44 9 × 8= 72
2、8是倍数,4是因数。…………… ( )
强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单说谁是倍数(或因数)。
因数和倍数不能单存在。
师出示:0×3 0×10
0÷3 0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
2、试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?
2、3、5、9、18、20
师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?
生:2、3、9、18都是18的因数。
师:18的因数只有这4个吗?
师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。
投影仪出示学生的不同作业。交流找因数的方法。
师:出示18的因数有:1、18、2、9、3、6;
你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。
师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?
生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……
师:用乘法和除法找都可以,你们认为用什么方法更容易呢?
生:乘法。
板书:18的因数有:1、2、3、6、9、18。
师:18的因数也可以这样表示。(课件出示集合圈图)
组织交流:
通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?
突出要点:有序(从小往大写),一对对找
(哪两个整数相乘得这个数),再按从小到大的顺序写出来。
用我们找到的方法,试一个。
课件出示:
填空:
24=1×24=2×( )=( ) ×( )=( ) ×( )
24的因数有:_______________
再试一个:16的因数有( )
师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?
生:因为4×4=16,只写一个4就可以了。
师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。
生:18的因数有6个,最小的是1,最大的是18.
16的因数有5个,最小的是1,最大的是16.
师:谁能把同学们的'发现,用数学语言概括起来。
边交流边板书:
因数: 个数 最小 最大
有限 1 它本身
2、师:刚才同学们通过自主探索和合作交流,不但掌握了找一个数的因数的方法,而且发现了一个数的因数的特点,那么一个数的倍数,怎样找呢?找一个小一点的,2的倍数,请你们在纸上写。
师:停,写完了吗?你能把2的倍数全部写下来吗?那怎么办?
生:不能全写下来,可以用省略号表示没写完的。
师:你写得这样快,有小窍门吗?
生:用这个数有顺序地乘1、2、3、4、……
先写2,再逐个加2。
板书:2的倍数:2、4、6、8、10……
师:2的倍数也可以这样表示。(出示用集合圈表示的2的倍数)
找出3的倍数:3、6、9、12、15 ……
观察2和3的倍数,你有什么发现:
板书: 倍数 : 个数 最小 最大
无限的 它本身 无
师:找出30以内5的倍数:
生:5、10、15、20、25、30
师:这一次你找到了哪几个?为什么不加省略号呢?
课件出示:30以内5的倍数的集合圈图。
引导学生抽象地概括出一个数的最小因数和最大因数分别是什么,总结出一个数的因数的个数是有限的结论,向学生渗透从
个别到全体、从具体到一般的抽象归纳的思想方法。
三、巩固应用,内化提高
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单说谁是倍数(或因数),也就是说:因数和倍数不能单存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①( )是4的倍数
( )是60的因数
( )是5的倍数
( )是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:( )是1的倍数。
师:全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
8、五年级数学下册《包装的学问》教学设计
教学目标
知识与技能目标:利用表面积等有杜知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:
1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化、发展优化思想。
情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点:
利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
教学难点:
理解最节省包装纸的包装策略
教学方法:
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
教具准备:
多媒体课件,师生共同准备若干个长方体纸盒。
教学过程:
一、激发兴趣,导入课题。上课了,我们想对自己说些什么呢?下面请同学们欣赏几幅关于包装的图片(课件出示图片)师:你们看到了这几幅图片后有什么感受,请说一说。物品经过包装显得更精美,可见包装的作用很大,那在包装中要注意哪些问题呢?今天我们先从节约的角度来研究一下《包装的学问》(板书课题)。
二、动手操作,自主探究,初步感知(生本交流)。
1、小组活动,自主探究
(1)国家很关心我们青少年儿童实,施了蛋奶工程,那奶盒的长、宽、高各是多少?表面积有多大呢?接口处不计
(2)如果要将两盒奶包成一包,包装时一共需要多大面积的包装纸呢?师:有没有不同的意见?说一说。问:合起来包装为什么就不需要416平方厘米的包装纸呢?请同学们小组合作,拿出两个长方体纸盒摆一摆。请一名学生展示摆放的方法。问:还有没有其他的包装方法?再指明展示。
2、展开猜想,交流讨论时。师:大家观察一下这三种包装方法有什么不同?同学蜜察的很仔细。请看第一种方法重合的是哪些面?师,我们可以说重合了两个小面。第二种方法和第三种方法呢。师:请同学们猜想一下这三种方法,哪种方法最节约包装纸?问:第三种方法最节约,你能说一说你是怎样猜想的吗?
3、验证猜想,得出结论。师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)问怎样计算大长方体的表面积?先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?再指名板书。师:我们来比较一下哪种方法简单一些?(把两个小长方体的表面积之和减去重合面的面积。)请同学们用自己喜欢的方法计算另两种的面积。师:从计算的结果看,是不是和我们刚才的猜想一致呢?谁能说一说在包装时,究竟怎样包装才能节约包装纸呢?
三、组合三个,再次体验
如果要把三盒奶包装起来,需要多少包装纸呢?请同学们在小组内动手摆一摆。请同学们小组合作,拿出三个盒子摆一摆。怎样包装才能节约包装纸?有几种包法呢?
在小组合作学习之前先看一下要求:电脑演示学习要求。利用盒子摆一摆,能找出几种不同的摆法?分别计算出不同摆法拼成长方体的表面积,并把有关数据填到统计表中。哪种拼法最节省包装材料?找一找有什么发现?填好研究过程记录表。
再请小组代表展示包装的方法。(学生上讲台展示)
四、质疑拓展阶段,师生交流。
1、师反问为什么不包装成不规则立体图形的方式呢?总结:不美观也不节约,所以我们包装长方体物体的时候一般还是包装成长方体形式的。
2、看来同学们都知道怎样节约包装纸了,愿意接受更大的挑战吗?如果要包装四盒奶,怎样包装才能节约包装纸?
3、六人小组活动要求,拿出四个盒子摆一摆,你能找出几种不同的摆法?观察比较哪种包装最节省纸张,细心观察,你一定会有新的收获?小组分工合作完成;最先完成的小组上台展示摆法。 其他小组有什么疑问可以问他。师:用你们的慧眼观察一下,这六种摆法里了你们又发现了什么?第几种方法最节约?师设疑:刚才我们发现“重叠面积越大,表面积越小”是不是有错呢?看来同学们对这两种有疑问,下面我们在用手中的学具演示演示一次他们不同的拼接过程。
4、总结:现在同学们明白了吗?这句话有没有错?其实有时最大是会发生变化的,此时要根据实际情况及时调整,始终使重叠的面积是最大的面积就可以了。
五、总结回顾,梳理经验。通过这节课的学习,你有什么收获和想法?请说一说,这一类题该怎样计算呢?
包装虽小,里面的学问却不少,适当的包装是对自身的有效补充。但没有充实的内在素养,包装只能投有其表,让我们每个人都用智慧和勇气包装自己!
六 、作业设计
1、包装时不仅要考虑节约,还要考虑哪些因素呢?到超市中调查,看看哪种商品的包装不够节约包装纸,为它设计一个最节约包装纸的包装方案,并思考厂家为什么要这么包装?
2、你为灾区的小朋友准备了什么礼物?老师帮他们挑了一套分别为1、2、3、4集的书,每本书长、宽、高分别为20厘米、15厘米、8厘米。老师想亲手将这套书用彩纸装饰起来,请你为我设计一个装饰方案。要求:设计一种最省的包装方法,并想一想,除了节省之外,我们还需要考虑哪些因素呢?
七、板书设计
包装的学问
重叠的面积越大,露出的面积就越小,就越节约纸张
9、五年级数学下册《包装的学问》教学设计
教学目标:
1、知士标:利用表面积知识,探索多个相同长方体叠放后表面积最小的最优策略。
2、能力目标:使学生体会解决问题的基本过程和方法,提高解决问题的能力。
3、态度价值观目标:通过解决包装问题,培养学生的优化思想。
教学重点:应用表面积等知蚀讨论如何节约包装纸。
教学难点:引导观察、比较、交流、反思,得出节约包装纸的最佳策略。
学具准备:
学生自带长方体纸盒
教学方法:小组合作,动手操作
教学设计:
一、创设情境,引入课题 。
师:出示两个长方体,问学生喜磺个?让学生体会包装问题在实际生活中很有必要。你别看这个事情很小,其中却包含着不少学问呢!
这就是我们今天要探究的问题——包装的学问。(板书:包装的学问)
二、立探索,初步感知
(一)一个长方体的包装
1.出示长方体的物品,引入包装一个长方体时需要包装纸的大小
引导学生说出:求包装纸的大小就是要求出表面积,求表面积,先要知道长,宽,高。
2、学生动手算一算.
3、汇报答案,并进行讲解。
(二)两个长方体的包装
1、 今天老师买了两个帖包,打算把它包成一包送给朋友,你认为可以怎样包装?
学生上台演示,各抒己见。
三、小组合作,动手实践
1、明晰问题:包装的方法有多种,到底怎样包装最科学呢?首先让学生说说“最科学”的意义。明确:这节课主要考虑节省包装纸的问题。
2、出示学习要求,学生开始操作探索。
3、学生反馈,进行交流。
明确:尽量把最大的面重合,最节省包装纸。
3、继续引导学生发现三盒包装时的规律。(继续让学生寻找规律,说出想法。)学生通过重合面比较 。
4、那四盒呢?用这个规律还行吗?以小组为单位,摆一摆,并说出自己的方案。(屏幕出示)学生先直观判断,然后引导计算比较六大面重合(方案一)和四大面四中面重合(方案二)时的表面积。
四、质疑,拓展:
1、通过计算提出质疑:尽量把最大的面重合并不一定最节省,怎样才能确定重合的面积最大?有没有规律可循呢?算算其他四种方案的表面积,我们一起来探究一下规律。
2、各小组计算后, 引导学生观察长宽高的和与表面积大小的关系,再交流 。得出结论:包装后形成的新的长方体的长宽高的和越小,则表面积越小,就越节省包装纸。
3、拓展练习:小组操作、讨论:六个相同的长方体,怎样包装最节省包装纸?
五、课堂小结:这节课你有什么收获和感受?
六、布置作业
10、五年级下册数学《长方体的认识》教学设计
五年级下册数学《长方体的认识》教学设计
教学目标:
1、初步认识立体图形,认识长方体的特征。
2、通过观察、想象、动手操作等活动,进一步发展空间观念。
3、继续培养学生学习数学的兴趣,进一步形成用于探索、善于合作交流的学习品质。
教学重点:掌握长方体的特征。
教学难点:形成长方体的空间观念
教学用具:长方体或正方体的小纸盒。
教学过程:
一、激趣引入
1、师:画面上是什么图形?(长方形)现在请你们认真观察,看看有什么发现?(课件演示由6个长方形围成一个长方体的过程)
2、师:同学们在一年级已经初步认识了长方体,是不是由6个任意的长方形都能像这样围成一个长方体呢?这节课我们就一起来继续研究和长方体有关的一些知识。(板书课题)
二、课前预习:
自学内容 P27~29例题1~2
1、 同伴互相举例说说生活中的长方体
2、 观察长方体,看P28的例一,试着(用铅笔)完成书中的表格。
3、 用工具袋里的材料,小组同学合作,共同做一个长方体。写下你发现了什么?
尝试练习 :试着完成P29的做一做练习
4、 有什么疑惑?
三、汇报展示:
(一)导入
1.已经认识过许多物体的形状,你能说一说国旗、手帕、红领巾等各是什么形状吗?小结:长方形、正方形、三角形都是平面图形。
讲台上放一些物体,注意观察它们的形状、它们和平面图形一样吗?
2.指出:像这些物体都是立体图形。其中,粉笔盒、书等的形状是长方体。你还能说出一些长方体形状的物体吗?
、出示P27图,让学生观察。
师:周围有很多物体的形状是长方体的,从主题图中找一找。(电脑抽象出长方体的图)
师:你带来了哪些长方体形状的物品?
4.小结:我们周围有许多物体的形状都是长方体或正方体(也叫立方体)。
(二)教学实施
1.认识面、棱、点。
师:昨天让同学蜜察了长方体。现在老师来演示一下,你们说说面、棱、点的区别。
(1)拿出准备的马铃薯,用刀切下一片,你看到了什么?(一个平平的面)
(2)挨着这个面,再切一刀,你又看到了什么?(两个面,一条边)及时指出:我们把两个面相交的这条边叫做棱。
(3)紧挨着这两个面再切一刀,形成三个面,现在你又看到了什么?(有三个面,三条棱)指出:三条棱相交的点我们把它叫做顶点。
2.汇报长方体的面:
提问:长方体是由什么围成的?
3.汇报长方体的棱和顶点
4.汇报面、棱、顶点的特征
提问:大家已经认识了长方体的面、棱和顶点。一个长方体,它的面、棱和顶点还有哪些特点呢?请同学们以小组为单位,继续汇报,并完成下面这几个问题:
(1)面的特征
①用手摸一摸它有几个面(注意培养学生有顺序地观察)
②每个面是什么形状?(注意出示也有两个相对的面是正方形)
③哪些面完全相等?
长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。
(2)长方体的棱的特征。
①数:长方体有多少条棱?(要说出数的方法)
②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)
根据学生的发言归纳出:(投影显示)长方体有12条棱,相对的4条棱的长度相等。
(3)长方体的顶点的特征。
让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:长方体有几个顶点?(8个)
5.概括长方体的特征。通过大家的操作、讨论可以知道:(课件出示)
长方体是由 个长方形(特殊情况有两个相对的面是 形)围成的
图形。在一个长方体中,相对的面 ,相对的棱的长度 。
6.拿一个长方体放在讲台上让学生观察。
最多能看到几个面?(3个面)
讲:所以我们通常把长方体画成这样。指导学生画长方体的图形。
(三)、汇报长方体的长、宽、高。
1.出示P29例题2,昨天让同学们用学具做了一个长方体的框架。提问:在做的过程中,你发现了什么?并汇报下面的两个问题:
(1)它的12条棱可以分成几组?怎样分?
(2)相交于同一个顶点的三条棱长度相等吗?
2.揭示长方体的长、宽、高的概念。
(1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)
(2)长方体的长、宽、高的长短与这个长方体有没有关系?(出几个长、宽、高不同的长方体)
结论:长方体的.大小和形状是由它的长、宽、高决定的。
让学生指出自己长方体的长、宽、高。
3.总结(课件出示填表内容)
四、反馈检测
1完成P31练习五T1。
2.一个长方体,长5厘米,宽3.5厘米,高2厘米。这个长方体的棱长综合是多少厘米?
3.一个长方体的棱长总和是96厘米。它的长、宽、高的和是多少厘米?
4、判断。
(1)长方体有6个面,12条棱和8个顶点。( )
(2)长方体相对的面的大小、形状都相等。( )
(3)在长方体中,不是相对的棱长度都不相等。( )
板书设计: 长方体的认识
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
课后反思:
教学本节内容我主要采用了课件演示及让学生动手操作的形式。上课伊始用课件出示学生已经见过的图形,自然引出长方体和正方体,激发了学生的学习兴趣,接着让学生通过看一看、摸一摸、量一量自己带来的长方体和正方体了解它们的特征,进而也知道了什么是长方体和正方体的长、宽、高。通过多种形式的练习,学生加深了对长方体和正方体的认识。
11、五年级下册数学《因数和倍数》教学设计
五年级下册数学《因数和倍数》教学设计
教学内容:因数与倍数(P12-13例1及P15题1、2)
教学目标:
1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。
2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。
3、培养学生的合作意识、探索意识以及热爱数学学习的情感。
教学重点:理解因数的意义
教学难点:能熟练地找一个数的因数。
教具准备:多媒体课件
教学过程:
一、引入新课:
1、课件出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?
(指名生说一说)
4、你能不能写一个算式来考考同桌?学生写算式。
5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)
齐读教材第12的注意。
二、自学预设:
1、仔细看例一,什么叫因数和倍数?像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?
2、怎样找因数?例如18,36的因数是什么?
3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)
尝试练习
试着完成P13的做一做练习
三、认识因数与倍数,展示交流
(一)找因数:
1、出示例1:18的因数有哪几个?
师:从12的因数可以看出:一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成汇报:(18的因数有: 1,2,3,6,9,18)
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示
5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的'过程中一对一对找,写的时候从小到大写。
(二).我的质疑
1.谁能举一个算式例子,并说说谁是谁的因数?
2.讨论:0×3 0×10 0÷3 0÷10
提问:通过刚才的计算,你有什么发现?
3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。
四、反馈检测
1.下面每一组数中,谁是谁得因数?
16和2 4和24 72和8 20和5
2.下面得说法对吗?说出理由。
(1)48是6的倍数
(2)在13÷4=3……1中,13是4的倍数
(3)因为3×6=18,所以18是倍数,3和6是因数。
3、完成P15第2题
学生自己立完成,讲评时让学生说一说,是怎么想的?
五、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计: 因数和倍数
18的因数有: 1,2,3,6,9,18
一个数的因数::最小的是1,最大的是它本身。
12、五年级数学下册《包装的学问》教学设计
教学目标:
(1)找出各种不同的包装方法,计算表面积,并比较出最节约的包装方法,体验策略的多样化,发展优化思想。
(2) 发展动手操作能力、空间观念,培养积极思考、探究规律的能力。
(3)弘扬民族精神,渗透节约的意识。
教学重点、难点:
重点是:探索多个相同长方体叠放最节约的包装方法。 难点是:灵活、快速地找出最优的包装策略。
教学准备:课件、磁带等。
教学过程:
一、创设情境,引入课题。
包装在我们的生活中应用非常广泛,外表亮丽,便于携带的包装总是首先吸引我们的注意。怎样包装最漂亮,怎样包装便于携带,怎样包装最节约用纸?这些都是包装的学问。今天这节课我们就从节约的角度来研究一下包装中的学问。
板书:包装的学问
二、合作交流、自主探索。
大家首先明确今天我们的学习目标及自学要求。(出示课件二、三)
根据课本中的方法包装磁带。(出示课件六)
1、明确求磁带的包装面积就是求长方体的表面积。
老师这里有两盒磁带,现在很想知道,如果要包装这盒磁带至少需要多少包装纸?(接口处不计)谁能帮帮我?
同学们,听了他们的话,我们知道至少需要多少包装纸,就是要求——长方体的表面积。
好,老师已经量出了这两盒磁带的长宽高,那你能算算吗?出示课件(师:强调接口处不计)
2、 探究节省包装纸的方法。
(1)现在要把2盒磁带装成一包,会有几种不同的包装方案? (课件出示)
利用手中的磁带和你的同桌一起拼一拼、摆一摆,看有哪几种不同的包装方案?(接口处不计)
说得真好,我们得到了三种包装方法,分别是大面重合、中面重合、小面重合。[有序的数学思想 ](课件演示八)
那么对于这三种包装方法你们有什么看法?
刚才这位同学猜测最大面重合最节省包装纸。其他同学一样吗? 猜测是科学发现的第一步,但是既然是猜测,我们就要怎么样?(板书:验证)
小结:刚才我们通过一一列举并且大胆的猜测,还找到了不同的方法验证现在你们可以得出什么样的结论呢?
3、三盒磁带的包装
请同学们先猜一猜,老师要把三盒磁带包成一包,你能设计出几种包装方案?(课件出示九)
你们猜得对不对呢?还是3人小组合作,亲自动手摆一摆。
采访某个小组的成员,重点要发言的学生可以看着自己磁带的摆法说出他的包装方案哪些面重合了,其余同学可以补充。
不用计算,观察这3种摆法,你能知道哪一种方案最节约包装纸吗?为什么?
4、四盒磁带的包装
我们班的同学真聪明,这些包装问题都难不住大家,对于刚才两盒、三盒的结论,4盒磁带是否依然是成立的呢?
请同学现在脑子里想象一下4盒磁带,你可以想到多少种包法? 谁愿意说一说,你猜有几种?
我们还是要用事实来说话。前后2排为一组,自己动手摆一摆。 指名某个小组汇报,重点要发言的学生可以看着自己磁带的摆法,说说看看哪些面重合了,其余同学可以补充。(课件出示十——十七)) 你猜猜哪一种方案最节约包装纸吗?为什么?
是否需要每一种都去算呢?哪些肯定不是最节省包装纸的呢? 哪些可以排除掉呢?为什么?还能再排除吗?
大面=11×7=77(cm2 ) 2个中面=11×2×2=44(cm2 ) 现在我们能不能得出这样的结论,任意四盒相同的长方体,只要将最大面重合就最节省。真的是这样吗?
现在老师把当初磁带盒的长、宽、高数据稍稍变动一下,已知这个
长方体的长7cm,宽4cm,高4cm。(课件出示二十二)
虽然老师把磁带盒的长、宽、高数据变动一下,但这个长方体还是会有几种包装方案呢?(6种),所以我们还是要来比较1个大面和2个中面的面积大小。又会是哪一种最节省呢?
(板书)大面=11X7=77(cm2 ) 2个中面=11X4X2=88(cm2 )
同学们,我们在采用把大面重合的做法把盒子摞起来时,当摞成的长方体又有新的(比原来大面大的)大面出现时,就应该分成两摞才最节省包装纸。
看了这几个例子,你有什么想说的?
那么,我们刚刚总结的只要将最大面重合就最节省,可以怎么改一下呢?板书:重合的总面积最大,最节省包装纸。
师:边写边说:所以,在有多类摆法的包装方案中,要视图中给出的长、宽、高的具体数据才能决定包装的最优方案。
三、师生小结,深化知识。
这节课对你有什么收获?有什么启示吗?还有什么疑惑吗? 生活中有许多的事情可以用数学的方法来解决,包装这个小问题,学问可真不少,实际生活中我们在包装的过程中还要考虑些什么因素呢?(要留出接头处、美观、便于携带等)。大家考虑的很全面,有兴趣的同学还可以深入的研究一下关于包装的学问。
四、课后作业
生活中有很多的商品包装,观察这些包装形式,你认为合理么?如果合理,合理在什么地方?如果不合理,那请你替全班同学设计一种合理的包装形式。
13、五年级下册数学《分数的基本性质》教学设计
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才
生:0除外
师板书0除外
师:到现在为止这个规律我们就
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师
14、五年级下册数学《体积和体积单位》教学设计
五年级下册数学《体积和体积单位》教学设计
教学目标:
1、通过实践操作,使学生理解体积的含义,建立体积的概念。
2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。
3、通过学生的动手实践,加强学生的空间观念。
教学重点:形成体积的概念和掌握常用的体积单位。
教学过程:
一、依据预习提纲,自主学习。
1.什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)
3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?
4.长方体的体积公式是什么?
5.正方体的体积公式是什么?
6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
7.讨论长方体和正方体的体积计算方法是否相同.
二、探索研究,交流展示。
1.故事引入:出示主题图:乌鸦喝水的故事。
自由汇报:乌鸦是怎样喝到水的?为什么?
2.学生实验:
取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)
3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?
不同的物体所占空间的大小不同。
4.体积概念的引入:物体所占空间的'大小叫做物体的体积。(板书课题:体积)
加深理解:
三、体积单位的认识:(学生先看书自学,再汇报交流。)
1.我们已经学过哪些长度单位和面积单位?
2.出示两个长方体:怎样比较这两个长方体体积的大小呢?
3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?
介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。
4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。
我面定:棱长是1厘米的正方体的体积是1立方厘米。
1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。
②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。
我们生活中,哪些物体的体积大约1立方米?
5.练习:
(1)完成P40“做一做”T1。
说一说分别是用来计量什么的单位,它们有什么不同?
长度单位、面积单位、体积单位的联系与区别。
(2)完成P40“做一做”T2。
让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。
三、反馈检测
1.
2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
教学设计:
体积和体积单位
常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。
棱长是1厘米的正方体的体积是1立方厘米。
课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。
15、五年级下册数学《分数的基本性质》教学设计
教学目标:
1、让学生通过经历预测猜想实验分析合情推理探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的.思想,培养敢于质疑、学会分析的能力。
教学重点:使学生理解分数的基本性质。
教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程:
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1、师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2、师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3、师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼诗平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4、研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5、深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1、学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2、学生练习课本例题2,两名学生在黑板上做。
3、学生自己小结方法。
4、按规律写出一组相等的分数。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除