数学竞赛试题 华罗庚杯数学竞赛试题
篇1:九年级数学竞赛试题
基础题
1.(北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为( )
A.15 B.25 C.35 D.45
2.(20上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.
3.(年湖北宜昌)~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小
4.(2013年福建福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )
A.3个 B.不足3个 C.4个 D.5个或5个以上
5.(2013年海南益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.
6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出一子,则提出白子的概率是多少?
(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
B级 中等题
7.(2013年重庆)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.
8.(2013年湖北襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.
9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率;
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
10.(江西)如图7?2?3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].
(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;
(2)若从这四只拖鞋中随机地取出两
11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是( )
A.乙抽到一件礼物 B.乙恰好抽到自己带来的礼物
C.乙没有抽到自己带来的礼物 D.只有乙抽到自己带来的礼物
证明题
例1.已知:△ABC中,∠B=2∠C,AD是高
求证:DC=AB+BD
分析一:用分解法,把DC分成两部分,分别证与AB,BD相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C
辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得
∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N
求证:AH=2MO, BH=2NO
证明一:(加倍法――作出OM,ON的2倍)
连结并延长CO到G使OG=CO连结AG,BG
则BG∥OM,BG=2MO,AG∥ON,AG=2NO
∴四边形AGBH是平行四边形,
∴AH=BG=2MO,BH=AG=2NO
证明二:(折半法――作出AH,BH的一半)
分别取AH,BH的中点F,G连结FG,MN
则FG=MN= AB,FG∥MN∥AB
篇2:九年级数学竞赛试题
1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.
3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
4.解方程2|x+1|+|x-3|=6.
5.解不等式||x+3|-|x-1||>2.
6.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
7.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
8.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
9.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
答案:
1.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以
原式=-b+(a+b)-(c-b)-(a-c)=b.
2.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,
|x+m|+|x-n|=x+m-x+n=m+n.
3.分别令x=1,x=-1,代入已知等式中,得
a0+a2+a4+a6=-8128.
4.略
5.略
6.商式为x2-3x+3,余式为2x-4
7.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
8.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
9.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,
即5x+6y=43.
所以x=5,y=3是的非负整数解.从而房间里有8个人.
排列组合问题:
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有
A768种B32种C24种D2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2若把英语单词hello的字母写错了,则可能出现的错误共有()
A119种B36种C59种D48种
解:
5全排列5_4_3_2_1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
篇3:九年级数学竞赛试题
一.选择题
1.﹣22=()
A.﹣2B.﹣4C.2D.4
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除