六年级上册数学教案

六年级上册数学教案

  作为一名教师,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。快来参考教案是怎么写的吧!下面是小编整理的六年级上册数学教案,希望对大家有所帮助。

六年级上册数学教案1

  复式条形统计图

  教学内容:北师大版小学数学教材六年级上册第59—60页。教学目标:1.知识目标:认识复式条形统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形表示相应的数据。

  2.能力目标:使学生能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的.分析,判断和预测,能根据要求把统计图补画完整。

  3.情感目标:⑴培养大家勤于动手动脑的良好习惯。⑵引导大家热爱生活,关注身边的每个事物。

  教学过程:

  一、谈话引入。

  我们已经学过哪些统计图?这些统计图表示数据的方法和特点各是什么?生自由发言。

  揭示课题:复式统计图。

  二、创设情境,初步感知。

  在体育课上你们做过投球游戏吗?根据你的经验,投球时单手投得远一些,还是双手投得远一些?

  学生自由发言。

  究竟谁的想法更合理呢?让我们先来看看第一活动小组同学投球的结果吧。(出示统计表)

  从表格中能比较出结果吗?

  用条形统计图怎样表示呢?自己动手试试看。

  以小组为单位在方格图中尝试完成统计图。

  评价一下,哪幅图更便于比较两种投球方式的投球距离?

  (各小组修改统计图)

  三、探索研究,猜测交流

  从上面的统计图中你得到了哪些信息?

  (大多数的同学都是单手比双手投得远,而且相差得也比较大;也有4号同学双手比单手投得远一些,但是差得并不太多,看来大多数同学还是单手投球会投得更远;6号同学两种情形投的距离一样远,挺有意思的。)

  这是他们小组的情况,我们班的情况不知道和他们一样不一样,最好我们也实际投一投,将数据收集起来再进行比较。

  我们下午有体育活动课,我们实际做这个实验,各小组要组织好,注意安全,做好记录。这次我们要进行“双手、左手、右手”的实验,先预测一下:哪种情况投掷的距离远呢???四、尝试应用,解决问题

  教材60页试一试,操作应用。

  提醒学生:要认真细心地确定每条直条的高度,用不同的颜色直条表示城镇居民的农村居民平均每年旅游消费的情况。

  五、实践应用,走向生活。

  教材60页,实践活动。

  六、总结全课,储存新知

  通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?

六年级上册数学教案2

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的.倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:0.2的倒数是多少?

  五、小结:请学生说一说这节课学习了哪些内容。

  六、作业:练习五3—8。

六年级上册数学教案3

  复习内容:课本第22页练习六。

  复习目的:

  1、使学生进一你好理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。

  2、使学生进一你好理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。

  3、使学生进一你好理解倒数的意义并掌握求倒数的方法。

  复习过程:

  (一)导入:板书:整理和复习

  (二)整理。

  1、启发学生回忆整数乘法的意义:5个12是多少?怎样列式。

  使学生明确:5×12或12×5

  求几个相同加数的和的简便运算。

  2、启发学生回忆本单元学过的分数乘法的意义:

  使学生明确:8/15×5,5个8/15的和,

  8/15+8/15+8/15+8/15+8/15=8/15×5

  分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  3、一个数乘以分数的意义,就是求这个数的几分之几是多少?

  使学生明确:24×3/8就是求24个3/8是多少,7/18×9/14就是求7/18的9/14是多少,是对整数乘法的的扩展。

  练习:练习七的.第3题。

  板书:

  分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变,为了计算简便,能约分的要先约分,然后再乘。

  一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母,为了计算的简便,也可以先约分再乘。

  使学生明确:分子相乘的积作分子,分母相乘的积作分母。

  板书:

  应用乘法交换律应用乘法结合律应用乘法分配律

  练习:练习七的第4、5题。

  5、口算

  练习七1、10题。

  6、分数应用题。

  (1)把谁看作单位“1”

  六年级参加数学小组的有36人,语文小组的人数是数学小组的,体育小组的人数是语文小组的倍。体育小组有多少人?

  (2)练习。

  ①打字员打一部书稿,每天完成,5天完成这部书稿的几分之几?

  ×5

  ②立新小学六年级有学生155人,其中的参加科技活动小组,参加科技活动小组的有多少人?

  155×

  ④党校食堂九月份用煤560千克。十月份计划用煤是九月份的,而十月份实际用煤比原计划节约,十月份比原计划节约用煤多少千克?

  560× ×

  7、倒数:整理和复习第7题。

  堂上练习:

  1、练习七第2题,抢答,小组练习。

  2、练习七的第3、11题。

  3、练习七的第16、17题。

  作业:

  练习七的第12—15题。

六年级上册数学教案4

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  一、引新:

  开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的.乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:

  0.2的倒数是多少?

  五、小结:

  请学生说一说这节课学习了哪些内容。

  六、作业:

  练习五3—8。

六年级上册数学教案5

  解决问题的策略

  一、教学内容

  本单元教学用替换的方法解决实际问题。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。

  二、教材的编写特点和教学建议

  第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打??利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在“你知道吗”里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。

  第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次“练一练”都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里“说说为什么这样替换”“说说解决这个问题的策略”,例2里“你准备怎样来解决这个问题”,都是着眼于体会数学思想,积累数学方法,感受解题策略。

  (一)、直观的情境——引发替换。

  例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。1

  (二)、用多种形式解决问题——突出替换策略。

  例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。“你准备怎样来解决这个问题”不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如“猴子”卡通用画图的方法,“兔子”卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。

  三、教学目标:

  1、引导学生在具体的替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。

  2、初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。

  四、教学重点、教学难点:

  1、重点:引导学生在具体的'替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。

  2、难点:初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。五、课时安排:共3课时

  第一课时用替换的策略解决问题

  教学目标:

  1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重、难点:

  1、教学重点:用“替换”的策略解决问题。

  2、教学难点:理解“替换”的意义,知道什么样的数量关系可以替换。教具、学具准备:大、小杯子,清水等。

  教学过程

  一、出示问题,选择策略

  1、以图文结合的方式呈现例1,要求学生边读边看图。

  2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?

  3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?

  如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?

  4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?

  二、自主探索,运用策略

  1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?

  结合例题中的示意图提问:

  一个大杯可以替换成几个小杯?

  (1)把1个大杯替换成3个小杯的依据是什么?

  (2)由1个大杯可替换成3个小杯,你想到了什么?

  (3)小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。

  2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?

  (1)提出问题后,要求让学生看图思考。

  (2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的”,3个小杯的果汁正好可以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。

  (3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。

  3、列式解答:

  引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。

  4、检验。

  引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生通过计算进行检验,并完成答句。

  三、回顾与反思,提升策略

  提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?

  学生交流、汇报。

  四、拓展应用,巩固策略。

  1、指导完成“练一练”。

  (1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。

  (2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?

  (3)如果把2个大盒替换成小盒,这时一个就是几个小盒?你还想到些什么?

  (4)要求学生根据上述讨论的结果,想办法解决这个问题目。

  (5)让学生自主进行检验。

  (6)反思小结:解决这个问题的关键是什么?

  2、课堂作业:做练习十七第1题。

  五、全课总结:通过这节课的学习,你有什么收获和感想?

  第二课时用假设的策略解决问题

  教学目标:

  1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。 2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重、难点:

  1、教学重点:用“假设”的策略解决实际问题

  2、教学难点:从不同的角度看问题,提出不同的“假设”

  教具、学具准备:课件

  教学过程

  一、出示问题,讨论策略

  1、出示例2,读题。

  2、小组讨论:你准备怎样来解决这个问题?用什么策略?

  3、你准备怎样假设呢?

  二、自主探索,运用策略。

  1、出示提问:

  (1)如果这10只船都是大船,那么一共可以做多少人?

  (2)50人与42人比较,多出了几人?为什么会多出8人呢?

  (3)有一只小船被当成大船会多出几人?

  (4)一共多出8人,说明有几只小船被当成大船?

  2、列式计算:

  3、你还可以怎样假设呢?你能根据以上的提问,用你的假设方法解决问题吗?(小组讨论)

六年级上册数学教案6

  设计说明

  “百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:

  1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。

  数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。

  2.注重新旧知识的对比和迁移,体现类比的思想方法。

  对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的.意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的百分之几的数,表示的是两个数之间的倍比关系。

  课前准备

  教师准备 PPT课件

  学生准备 学生课前收集的生活中有关百分数的资料

  教学过程

  ⊙情境导入

  1.出示课件。

  师:同学们,看了这段资料,你发现了什么?你有什么感想?

  引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。

  师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?

  学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。

  2.引导学生交流课前收集到的百分数的资料。

  师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂

六年级上册数学教案7

  生活中的比练习课

  教学内容:生活中的比练习,完成课本第51页的第3题和实践活动。

  教学目的:

  1、进一步理解比的意义,能正确读写比,会求比值,理解比与除法、分数的关系。

  2、能利用比的知识解释一些简单的`生活问题,感受比在生活中的广泛存在。

  3、体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,

  并可以借助数学语言来表述和交流。

  教学重、难点:利用比的知识解释一些简单的生活问题。

  教学具准备:课件,学生准备软尺。

  教学过程:

  一、说一说

  说一说你对比有哪些了解?

  二、基础练习

  (一)填一填。

  1、甲、乙两种方砖,边长分别是80厘米、30厘米.它们边长的比是():();它们个

  积的比是():().

  12、一辆汽车小时行驶20千米.这辆汽车行驶的路程与所用时间的比是():(),比5

  值是().

  3、美术小组男生人数和女生人数相等,男生人数与女生人数的比是():().

  4、小明家养15只鸡,5只鸭。鸡和鸭的只数比是():(),比值是(),

  表示()是()的()。鸭和鸡的只数比是():(),比值是(),表示()是()的()。

  85、=():()=()÷() 9

  16、():()==()÷6=6÷() 3

  (二)对还是错.

  1、六(1)班男生和女生的人数比是24:23,那么女生和男生的人数比是23:24.()

  2、甲数除以乙数的商是2,甲数和乙数的比是3:2.() 3

  3、一个长方形的长和宽的比是2:3,就是说这个长方形的长是2分米,长是3分米.

  4、小红的身高是1米,妈妈的身高是158厘米,那小红和妈妈的身高比是1:158.

  5、糖和水的重量比是1:50,糖是糖水的

  (三)求比值

  28226:390.25:1.21::250克:1.2千克39151.() 50

  (四)练一练

  课本第51页的第3题。

  1.独立思考、组内讨论、汇报交流

  2.独立思考后交流

  说说比和比值有什么区别?(引导学生正确区分比和比值)

  3.说说你有什么发现?(引导学生发现比值越小,坡度越平缓。)

  三、实践活动

  量一量,找出你身体上的“比”。

  组内合作测量、写出找到的比并计算比值、汇报交流。

  四、拓展知识

  教师介绍黄金分割比。展示雅典古城的巴台农神庙和它的剖个图。

  五、全课总结

  对比你又有什么新的认识?

  六、布置作业。

  在教室里,找一找“比”,与同伴说一说

  教学反思

六年级上册数学教案8

  教学目标

  1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  3.认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

  教学重点:

  会运用商不变的性质或分数的基本性质化简比。

  教学难点:

  能解决一些简单的实际问题。

  教具准备:

  蜂蜜、水、量筒、水杯和自制课件

  教学时间:

  预习提纲:

  1、课本中哪杯水更甜?为什么?

  2、什么是化简比?

  3、化简比的根据是什么?怎样化简比?

  4、试完成第52页的试一试。

  教学过程:

  一、情境引入

  老师:不少同学已经发现今天讲台上多了两个杯子,这是老师课前分别调制好的两杯蜂蜜水。你现在能判断出哪杯蜂蜜水更甜吗?

  你们需要老师提供什么信息?

  根据学生回答出示数据信息:

  蜂蜜水

  (1)号杯:2小杯18小杯

  (2)号杯:40毫升360毫升

  你获得了什么信息?

  联系最近我们所学的知识,你想到了什么?

  随学生回答板书:(1)号杯2:18

  蜂蜜与水的比(2)号杯40:360

  二、探索新知

  1、体会化简比的必要性。

  再次提出问题:

  哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?

  想想办法,先和同桌交流。

  全班交流:你的想法与依据。随学生回答板书。

  2:18=2÷18=2/18=1/9

  30:270=30÷270=30/270=1/9

  比的比值都是九分之一,也就是说,两个杯子中的'蜂蜜与水的比其实都是是1:9。(式子后板书:1:9)

  2:18=2÷18=2/18=1/9=1:9

  30:270=30÷270=30/270=1/9=1:9

  说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?

  小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。

  2、理解化简比,揭示课题。

  观察、比较:原来的比与后来得出的比有什么联系与区别?

  根据学生发言,师板书:最简单的整数比

  你能列举几个“最简整数比”吗?

  通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。

  指化简过程,揭示课题:比的化简

  你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)

  刚才化简比时,用到了以前学的什么知识?

  小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。

  3、化简比的方法。

  (1)独立尝试:同桌两人分别选一道。(找两人板书)。

  出示小黑板:

  化简比:24:42120:60

  交流:说说你的思路。(方法、根据)

  (2)小组活动:

  化简比:

  0.7:0.82/5:1/4

  这两组比与前个的最大区别是什么?

  小组讨论:如何把这两组比化简?并试一试。

  (3)全班展示、交流:让我们一起来分享同学的智慧。

  (充分展示学生的不同方法。)

  (4)归纳:怎样化简比?

  (必要时,小组先讨论一下再在全班交流。)

  老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。

  4、看书质疑。

  三、巩固提高

  1、化简比:

  (要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)

  21:240.3:1.54/5:5/71:4/50.12:60.4:1/4

  2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样的吗?)

  四、总结

  回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

  小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要.

  五、作业:课本第52页试一试.

  板书设计

  比的化简

  比化简最简单的整数比

  1)号杯2:18=2÷18=2/18=1/9

  蜂蜜与水的比一样甜2)号杯30:270=30÷270=30/270=1/9

  教学反思

  1:9

六年级上册数学教案9

  指导过程

  一、引探准备:

  1、 4个7连加是多少?怎样计算? 2、还可以怎样计算也得28呢? 3、如何列式?为什么这样列式? 4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的'意义并计算。

  11、指书比较4/15×6还有更简便的方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  1、3/18×6 2/5×15 3/7×6

  3、P3 1、2

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

  一、引探准备:

  1、 4个7连加是多少?怎样计算? 2、还可以怎样计算也得28呢? 3、如何列式?为什么这样列式? 4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的意义并计算。

  11、指书比较4/15×6还有更简便的方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  1、3/18×6 2/5×15 3/7×6

  3、P3 1、2

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

六年级上册数学教案10

  教学目标

  1.利用知识的迁移规律,使学生理解比的基本性质。

  2.通过学生的自主探讨,掌握化简比的方法并会化简比。

  3.初步渗透事物是普遍联系和互相转化的辩证唯物主义观点

  教学重点

  理解并掌握比的基本性质

  课前准备

  课件、实物投影仪

  课时安排:

  1课时

  教学过程

  一、复习引入

  1.复习比和分数、除法之间的关系

  2.提问:比和除法,比和分数之间有那些联系?

  引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流

  3、出示三个分数:3÷4、6÷8、9÷12.变为比,并比较大小

  指名回答小组交流的结果.学生用语言表述比的基本性质。

  交流:比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫比的基本性质。

  教师引导交流:0除外是什么意思?

  学生交流,比的后项、除数是0没有意义。

  二、学习化简比

  1、说明:利用商不变的规律可以进行除法的简算;根据分数的基本性质,可以进行分数的'约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

  讨论.你怎样理解“最简单的整数比”这个概念?

  学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数.

  请个别学生举一个最简单的整数比。

  2、把下面各比化成最简单的整数比。(强调化成最简单的整数比—互质)

  14:2154:18

  教师引导交流:怎样把一个比化成最简单的整数比?

  总结方法:用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。或用求比值的方法算,最后结果仍然是个比。

  1÷10:3÷83/5:5/8

  教师引导交流:怎么把分数比化成最简单的整数比?

  总结方法:比的前项后项分别乘它们分母的最小公倍数,就化简成最简整数比。

  1.25:42.7:18

  教师引导交流:怎么把小数比化成最简单的整数比?

  总结方法:先将小数化成整数,再化简成最简单的整数比。

  3、练习:化简比

  60:245/8:7/245/4:0.75

  三、练习

  自主练习5、7、8

  四、小结:

  比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

六年级上册数学教案11

  教学内容:一个数乘以分数及其应用题。

  教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

  教学过程:

  一、只列式不计算

  1)两地相距4千米,小明行了4/5千米,还剩多少千米?

  2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

  二、发展练习

  (1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

  (2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

  (3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

  (4)每小时骑车行11千米,这4小时一共行多少千米?

  2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?

  3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的`1/4,第二次用去多少吨?

  4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  五、作业:练习四第11—15题。

六年级上册数学教案12

  教学内容:六年级上册第105页第七单元“数学广角”。

  教学目标:

  1、经历综合运用所学知识、技能和思想方法解决问题的过程,逐步形成综合应用知识的能力。

  2、通过多种途径查找资料,经历走进生活、材料收集、整理交流和表达,培养观察、搜集和处理信息的能力,感受数学与生活的联系。

  3、渗透思想品德教育,感受到节约用水的现实性和迫切性,增强节约用水的意识和行为,养成节约用水的良好习惯。

  教学重点:

  水龙头滴水速度的测算及折线统计图的绘制。

  教学难点:

  运用所测量的数据联系实际生活进行应用。

  课前准备:

  1、调查目前水资源现状,有条件的同学上网了解知识。

  2、观察生活中浪费水的现象,用图片或文字呈现出来。

  3、学生分组收集一个漏水龙头的漏水量。

  教学具准备:

  多媒体课件、统计表、铅笔、直尺、橡皮、量杯。

  教学过程 :

  一、情景激趣,引入课题

  师:老师给大家介绍一位非常熟悉的朋友,“双手抓不起,有刀切不开,煮饭和洗衣,都要请它来”。这是谁?

  生:这是水。

  师:同学们真棒!今天我们就来研究用水的问题。

  [设计意图:用谜语引入课题,既简单又贴切,激发学生的学习兴趣。]

  师:水一直被人们形容为“取之不尽,用之不竭”。是这样吗?(不是)请同学们谈谈你们的观点?(水是取之不尽,用之不竭的,可那只是海水,是不能饮用的,而淡水资源是有限的)

  师:请同学们将课前搜集的信息向大家汇报

  生1:地球上有70%多的地方都是水域,淡水只占地球水总量的3%,而在这3%的水当中,又有很多淡水在南极和北极的冰川中,因此只有极少数的水才能被人利用。

  生2:我知道每年的3月22日是“世界水日”。我国是世界是13个贫水国家之一。

  生3:今年4月发生三起水污染事件分别是:兰州、武汉、靖江。导致城市供水中断,市民上演“抢水大战”。

  师:同学们知道的真不少!

  师:对呀,这是我们蔚蓝迷人的地球,它同时有一个别名叫做水球。

  师:水资源组成,扇形统计图并简单讲解。(虽然全球水覆盖面积约70%,远远大于陆地,但陆地上的淡水仅占世界所有水资源中的2.6%,而可供人类轻易采用来维持生命的淡水,又仅占所有淡水的0.4%)

  下面是我国水资源分布情况,请同学们大声齐读

  生齐读:(我国的水资源人均占有量只有2300立方米,约为世界人均水量的四分之一,排在世界第121位,是世界山13个贫水国家之一。在我国的600多个城市中,有400多个城市缺水,其中有110个城市严重缺水。)

  师:我们一起来看看这些资料

  师:是什么原因导致了大量的缺水?

  师小结:正是环境的破坏,导致了大量的缺水,因为缺水,导致大片良田

  干涸,颗粒无收;因为缺水,沙漠正一步步吞噬着生机盎然的绿洲;因为缺水,人们的日常饮用水受到严重威胁。当我们看到这些画面时,我们是否感到心情沉重难过,我们需要发出怎样的呼喊?

  (学生可能回答:节约用水。)

  师:板书课题:节约用水。

  [实时评析:课堂上连续呈现几幅部分地方缺水的生活场景图,学生受到极大的震撼,因而从心灵深处发出要“节约用水”的呼喊。教育学生应节约用水,并感受节约用水的迫切性。]

  二、实验探究、综合运用

  (一)估算一个水龙头一天的漏水量。

  师:在日常生活中,我们常常碰到这样情况:水龙头坏了或没有关紧,水一滴一滴往外流,遇到这种情况,你会怎么做?

  (学生可能回答:我会想办法去关掉。)

  师:那么我们来估算一下一个漏水的龙头一天大概浪费多少水呢?

  (学生可能回答:“一桶吧”;“一杯水”;“四五桶吧”;“十个脸盆吧”;……)

  (二)收集信息

  师:到底谁说得最接近?课前老师布置大家收集一个漏水龙头的漏水量。现在请各小组代表将收集情况汇报一下。包括收集地点、漏水量大小、收集时间。

  (水龙头漏水量统计表,生汇报,师输入信息)

  (三)整理数据,填写统计表

  水龙头漏水量统计表

  小组编号 一 二 三 四 五 六

  收集用时 (分)

  收集漏水量(毫升)

  每分钟漏水量(毫升)

  1、分析数据,回答问题:

  (1)师:每个水龙头每分钟漏水量一样吗?为什么不一样?(不一样,有的快一点,有的慢一点。)

  那大家把每一个水龙头的每分钟的漏水量算出来吧。(生齐汇报,师输入数据)

  (2)师:我们任意选其中一个龙头的漏水量能代表所有水龙头的漏水量吗?(不能)

  2、复习统计知识

  (1)师:怎样才能表示全班同学调查到的水龙头漏水的一般水平呢?

  (生:选中位数,当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的一般水平就比较合适。)

  师:那么这组数据的是中位数是多少?是怎么算的,哪位同学汇报一下?

  生:答略

  师:板书:中位数25毫升

  3、计算,完成统计表和统计图

  (1)计算平均每一个水龙头一小时的漏水量是多少升?(注意单位是升)

  (2)现在我们就用这组数据具体计算一下,究竟一天能滴多少水呢?把你们计算的结果填入老师发下来的表格中。

  (3)师输入数据

  (4)根据统计表格绘出一个相应的统计图。

  (5)展示学生绘制的统计图。

  (6)出示师绘制的统计图

  (7)说说从这张统计图中你们感受到什么?水龙头的漏水量随时间的变化 是怎么变化的?(生:1.发现漏水量随时间的增加而增多。2.漏水量与对应时间的比值始终不变(即每分钟漏水量一定)。3.时间是原来的几倍,漏水量也是原来的几倍。)

  4、一个水龙头一年浪费的水量。

  师:到底浪费的多吗?我们来计算一下,如果按照这样的滴水速度,一个水龙头一年大约浪费多少水呢?师:1000升水是1吨,想一想,一个水龙头一年大约浪费了多少吨水呢?

  [实时评析:通过让学生亲自参与测量、收集和整理数据,计算水龙头的滴水速度,不仅渗透了函数的思想方法,而且使学生经历了综合运用所学的'数学知识、技能和思想方法解决解决问题的过程,逐步形成学生的实践能力。]

  三、联系实际、解决问题。

  1、师:虽然一个漏水龙头一分钟的漏水量并不多,但如果不加以注意控制,一小时、一天、一年浪费水的量是惊人的。我们日常生活中比如在家里、学校有没有浪费水资源的现象。

  生(答略)

  师:有哪些?

  生(答略)

  2、师:昨天午餐,我在我们学校水池边看到同学们在洗碗洗手时,老师想到这样一个问题,平时我们在洗碗洗手时能不能节约用水?于是老师带来了这样一组数据:

  (1)如果洗手时把水龙头拧小,每次大约能节约几升水?

  (2)照这样计算,如果每人每天洗手5次,一天可以节约多少水,一年呢?

  (3)师:照这样计算,全国13亿人每人每天节约多少吨水?

  (4)师:如果每吨水2元,大约浪费水费多少元?

  (5)师:如果每套新桌椅200元,可购买多少套供全国小学生使用?

  [实时评析:通过计算的结果,他们的感官受到强烈的冲击,意识到浪费水的严重程度如此触目惊心,感悟节约用水的重要性、必要性和迫切性,培养学生的节水意识。]

  四、讨论深化 明理导行

  1、同学们,通过刚才的学习、讨论,在今后我们的学习中,我们一定要做到(节约用水),那我们怎样才能做到节约用水呢?

  (学生可能回答:我们在平时用水的时候,应注意把水龙头开至适量的位置,用完后要拧紧水龙头。)

  (学生可能回答:碰到水龙头没关紧的,要把它关好。)

  (学生可能回答:用了的水先把他装好,可以用来打扫卫生用,或者浇花、种草。)

  2、节水措施

  五、小结

  1、畅谈收获:

  师:今天这节课与大家共同探究知识,老师很开心!老师有不少收获感受,那你们通过今天的学习有哪些收获与感受呢?(生略)

  2、节水倡仪:

  师:同学们,水资源是有限的,让我们向家庭、学校和社会发出倡议,让我们大声读这段话(节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。)

  [实时评析:让学生意识到在水资源如此紧缺的情况下,不仅自己要节约用水,而且要让全社会提高节约用水的意识。]

  3、欣赏水之歌(同学们进一步感受到水资源的可贵)

  师小结:同学们,让我们携起手来,从我做起,从现在做起,节约每一滴水,让我们的生命之水源远流长,让我们的家园更加美好。下面请欣赏水之歌来结束今天这节课!

  [课后总评: 这节课,努力营建了多层次、立体型的课堂空间,从学生已有的数学经验和生活经历出发,关注学生的内在潜能,着眼于学生的终身发展,积淀一种数学文化,学会用数学眼光观察、思考,学会理性的、有创意的生活。“节约用水”教学中,尝试把学生的学习活动建立在学生自觉关注、主动探索的基础上,通过师生、生生之间和谐有效的互动,增强了学生的自我意识,时时处处用事实来说话。学生经历了自主探索与合作交流的学习活动后,对“节约用水”认识已经不只是停留在“浪费水就是浪费钱”这一表层认识上,而能从珍惜“世界水资源”的角度去衡量自己的行为,认识身边的现象,把“节约用水”内化为自己的行为。]

六年级上册数学教案13

  学习内容

  教科书第55页例3及课堂活动第3题,练习十五第8~11题。

  育人目标

  1.学会借助线段图等方法分析较为复杂的现实问题。

  2.能考虑现实情况应用不同的策略解决问题,掌握一些策略性的知识。

  3.培养学生的发散思维能力,形成解决问题的基本策略,以及团队协调合作的能力,同时对学生进行诚信教育。

  4.在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  掌握一些解决问题的方法和策略性的知识。

  学习评价设计

  1.学生在思考、讨论中归纳出按比例分配解决问题的方法。

  2.运用归纳的知识解决实际问题。

  教学过程

  情境引入

  1.同学们,在日常生活中常会出现团队合作的情况。(让学生先简要交流课前了解的信息:人们一起合伙运货、租房等,如何协调付费的情况。)

  2.教师用课件呈现:三人需要用同一辆车运送同样多的货物共需90元,当车走到路程三分之一处,出现甲卸货,到路程的三分之二处,出现乙卸货,到终点是丙卸货。

  教师提出问题:他们如何分摊运费?请学生提出自己的想法。

  学生可能会提出:

  ①们运的货物同样重,把运费平均分配。

  ②尽管他们的货物一样重,但因为他们运的路程不一样。甲运的路程短应该少付,丙运的路程长应该多付。

  ③按照路程的长短按比例分配的办法来分摊运货的钱。

  ④能不能把运费分成每段30元,第一段由三人共同分担,第二段由乙和丙两人分担,第三段只有丙一个人承担,这样比较公平。

  ……

  以上方案中你认为哪一种比较公平?

  学生经过讨论会认为:平均分的方案不公平,因为甲运的路程短,却要和路程最长的丙付同样多的钱,这种方案在现实中不容易被接受。按比例分配或按每段路程来分摊钱的办法可以让运货路程短的付较少的钱,而运货路程长的付较多的钱,这样相对比较公平。

  抽生交流课前了解的信息。

  学生提出自己的想法

  讨论交流哪些方案才是公平的。

  在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  合作探究

  1.请选择自己认为比较公平的办法,把解决问题的方案和结果写出来。

  教师巡视,给予指导。

  2.交流汇报,展示学生解决问题的方案,要求汇报时阐明自己的解题思路。

  方法1:按路程比例分摊。把路程平均分成三段,甲行了一段付一份钱,乙行了两段路程付两份钱,丙行了三段路程应付三份钱。

  根据各人所行路程的段数,把钱一共分成:1+2+3=6(份)。

  其中甲占90的:90×1/6=15(元)

  乙占90的':90×2/6=30(元)

  丙占90的:90×3/6=45(元)

  答:甲应分摊15元的运费,乙应分摊30元的运费,丙应分摊45元的运费。

  方法2:按路程段数分摊。

  每一段的运费:90×1/3=30(元)

  第一段的运费甲、乙、丙三人分摊:

  30÷3=10(元),每人付10元。

  第二段运费由乙、丙两人分摊:

  30÷2=15(元),每人付15元。

  第三段运费由丙一人付30元。

  所以三人分摊的运费是:

  甲:10元

  乙:10+15=25(元)

  丙:10+15+30=55(元)

  答:甲应分摊10元的运费,乙应分摊25元的运费,丙应分摊55元的运费。

  3.对方案中存在的疑问可以组织学生进行辩论:如果你是甲,你会接受哪种方案?为什么?如果你是丙呢?

  独立设计公平的分摊方案。

  交流不同的解题思路。

  讨论交流,体验实际意义。

  在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  巩固应用

  1.课件出示情境。

  小强家房子出租给小李、小张、小王三个年轻人,每月房租是630元。6月份,小李只住到10日就搬走了,小张只住到20日也搬家了,小李和小张离开时都留给小王210元的房租。到月底小强的妈妈要去收房租了,如果你是小强,你会建议妈妈怎样收这三个年轻人的房租比较合理?

  由学生先提出方案,然后自己拟订方案解答。

  方法1:

  小李应付的房租:630×10/30x1/3=105(元)

  小张应付的房租:630×(10/30x1/3+10/30x1/2=210(元)

  小王应付的房租:630×(10/30x1/3+10/30x1/2+10/30)=315(元)

  方法2:

  630÷3=210

  小李:210÷3=70(元)

  小张:70+210÷2=175(元)

  小王:70+210÷2+210=385(元)

  请学生再思考:如果你是小王,你会怎样付房租?

  同时对学生进行诚信教育。

  2.课件出示:在方格纸上涂色设计图案(课堂活动第3题)。

  学生读懂题意后,让学生自选颜色,设计图案。然后再算出各种颜色所涂格子数的比,这样就把问题归结到按比例分配的问题上来,然后让学生自己去解决。

  先提出方案,然后自己拟订方案解答,最后全班交流自己分摊方法。

  讨论交流。

  独立理解题意,自选颜色设计图案并解答。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感,对学生进行诚信教育。

  课堂小结

  今天你学到了哪些解决问题的办法?

  谈收获。

  课堂作业

  练习十五第8~11题。

  思考题:参加比赛的人数应该是7的倍数(3+4=7),又因为参加比赛人数在160-170人之间,所以参加比赛的人数可能是161人或168人。

  独立完成。

六年级上册数学教案14

  教学内容:课本第4—6页,例2,例3及“做一做”,练习二1—4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

  1、理解一个数乘以分数的意义。

  (1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?

  指名列式,板书:

  问:表示什么意思?指名回答,板书:求3个或求的3倍。

  (2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

  指名回答:半瓶用表示;式子为:。

  说明:是求的一半是多少,也就是求的是多少。板书:求的。

  (3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?

  指名回答,板书:,问:表示什么意思?指名回答,板书:求的。

  2、引导学生小结。

  ①指出三个算式都是分数乘法,比较三个算式的不同点:

  第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  课本的做一做1、2题。

  说一说下列算式的意义。

  理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  得出:根据“工作效率×工作时间=工作总量”列出式子:。

  问:如果我们用一个长方形表示1公顷,那么公顷怎样表示?

  问:公顷的是什么意思?

  要求学生观察图

  (2)问:在图中的对于1公顷来说,是1公顷的几分之几?

  引导得出:

  观察这个式子有什么特点?

  出示例3的第二个问题。

  问:已经求公顷的`是公顷,那么公顷的应有这样的几份?就是多少公顷?

  板书:公顷)

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。

  例:

  (3)做一做。

  三、巩固练习:练习二第1、2题。

  四、小结。

  这节课我们学习了什么内容?

  一个数乘以分数的意义是什么?

  分数乘以分数的计算方法是什么?

  五、作业。

  练习二第3、4题。

六年级上册数学教案15

  教学目标:

  1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

  2、能灵活运用本单元研究得出的知识解答问题。

  3、 进一步感受数学的应用价值。

  教学重点:

  圆的周长和面积的计算。

  教学难点:

  综合应用。

  教学过程:  一.引入

  1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

  2.揭示课题。

  二.展开

  1.求圆面积的练习

  先用小黑板出示P27练习1——2再指名板演,

  然后让板演者说说计算过程。最后再次复习圆面

  积在各种条件下的计算公式:S=πr2=π()2

  2.综合应用。

  投影出示P27练习3~4题,先由4人组成小组

  进行讨论,并解答,然后在全班同学面前汇报,

  特别要说清思考过程,最后,教师讲解。

  三.总结

  本节课我们复习了什么?

  四.作业

  课后反思:

  教学内容 练习一(2) 课时

  教学目标:1.能灵活运用本单元研究得出的'知识解答问题。

  2.通过图形的组合,发展学生的空间想象能力。

  3.进一步感受数学的应用价值。

  教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

  教学难点:培养学生的空间能力,提高解决实际问题的能力。

  一.复习

  1、什么叫半径?什么叫直径?怎样求圆的周长?

  怎样求圆的面积?

  二.展开绿色圃中

  1.练习。

  先指名板演,其余同学各自做在草稿纸上,

  然后全体师生共同讲评,指出存在的错误,

  尤其是做在草稿纸上的同学一定要自己找出

  错误的原因和正确的解答过程,小组进行练习。

  2.小结。

  三.巩固练习

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除