圆柱的体积教案
圆柱的体积教案
作为一名优秀的教育工作者,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写才好呢?以下是小编帮大家整理的圆柱的体积教案,希望能够帮助到大家。
圆柱的体积教案1
教学目标:
1、渗透转化思想,培养学生的自主探索意识。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、使学生能够运用公式正确地计算圆柱的体积和容积。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学准备:小黑板
教学过程:
一、复习:
1、复习圆柱体积的推导过程:
长方体的底面积等于圆柱的`底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题:
1、练习五第7题:
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习五第5题:
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习五第8题:
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习五第9、10题:
(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?
(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
三、全课总结:
圆柱的体积教案2
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:用于演示把圆柱体积转化成长方体体积的教具、幻灯片。
教学过程:
一、迁移引入。
1、教师:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
2、教师:如果这个长方体和正方体的底面积相等,高也相等,那么它们的体积也相等吗?为什么?
3、教师:现在又有一个圆柱体,并且圆柱的底面积和长方体与正方体的底面积相等,高也与它们相等,大家猜猜看,圆柱的体积会与长方体和正方体的体积也相等吗?(指名学生口答)用什么办法来验证呢?
4、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的.一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、学习新课。
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下。要求:
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V =Sh
三、利用公式进行计算。
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、巩固应用。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、小结。
教师:这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
圆柱的体积教案3
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的.立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
圆柱的体积教案4
最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。
……
师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?
生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?
生1:我是从书上看到的。
(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)
生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!
师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?
(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)
师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)
生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?
师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。
师:了不起的一种想法!(师情不自禁的鼓起了掌。)
生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。
师:你真会思考问题!
生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。
生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!
师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!
……
整节课不时响起孩子们、听课老师们热烈的掌声。
过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。
现从“对话”的视角来赏析这则精彩的片段。
一、“对话”唤发出学习热情。
《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。
二、“对话”迸发出智慧的火花
“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的.呢?”,使学生的思维沿着各自独特的理解“决堤而出”。
三、“对话”赢得心灵的敞亮和沟通
“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。
数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!
圆柱的体积教案5
教学目标:
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:
掌握圆柱体积公式的推导过程。
教学准备:
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:
一、情境激趣导入新课
1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)
二、自主探究, 学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)
师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式
(二)猜想
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4) 你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………()
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()
(3)圆柱的底面积越大,它的体积就越大。............( )
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )
2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?
3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?
四、全课总结自我评价
通过这节课的学习你有什么感受和收获?
教学反思:
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的'基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
圆柱的体积教案6
教学目标:
1、知识技能
运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
圆柱体体积的计算公式的推导过程及其应用。
教学难点:
理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。
教学过程:
一、复习导入
同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体
的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
①拼成的近似长方体的体积与原来的圆柱体积有什么关系?
②拼成的近似长方体的.底面积与原来圆柱的底面积有什么关系?
?.拼成的近似长方体的高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?
让学生试做,集体反馈。
闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V= Sh
圆柱的体积教案7
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1、板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题)
通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1、创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的`空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2、你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
圆柱的体积教案8
教学内容:教材第12页例3、练一练,练习二第6~11题。
教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算套管体积的计算方法,井能应用于实际求出物体的重量。
教学重点:计算套管体积的计算方法。
教学难点:根据不同的条件求圆柱的体积。
教学过程:
一、铺垫孕伏:
1.求下列圆柱的体积(口答列式)。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的`体积是怎样计算的?(板书:V=Sh)
2.复习环形面积的计算公式。
提问:怎样计算环形面积?你能举例和同学们说一说吗?小组交流。
3.引入新课。
我们已经学习过圆柱的体积计算。这节课,就在计算圆柱体积的基础上,学习套管体积的计算。(板书课题)
二、自主探究:
1.教学例3。
出示例3,读题。提问:这道题求什么?要求钢管的质量先要求什么?怎样求钢管的体积?小组讨论。解答这道题还要注意些什么?(单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。
2.新课小结。
提问:怎样计算套管体积?如果知道套管的内周长和外周长几套管的长,怎样求套管的体积?
三、巩固练习
1.做练一练第1题。
指名两人板演,其余学生分两组,每组-题做在练习本上。集体订正。
2.做练习二第6题。
让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。
四、布置作业
练习二第7、8题及数训。
圆柱的体积教案9
教学内容:北师大版数学六年级下册5——6页。
教学目标:
1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学重点:目标1。
教学难点:目标2。
教学过程:
活动一:复习旧知,巩固学过的公式。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?
4、出示圆柱体的模型,说说它有什么特征?
活动二;探究新知。
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)
要解决这个问题,就是求什么?
2、圆柱的表面积包括哪几部分?
3、圆柱的表面积的计算关键在哪一部分?
4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的`图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?
3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。
4)长就是圆柱的底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
活动三:新知识的运用。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:
侧面积:2╳3.14╳10╳30=1884(平方厘米)
底面积:3.14╳10╳10=314(平方厘米)
表面积:1884+314╳2=2512(平方厘米)
要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?
求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。
3、练一练。书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。
圆柱的体积教案10
圆柱的体积
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2。会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3。引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4。借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的`方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1。探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程当中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡)高(m)圆柱体积(m3)
63
0.5 8
52
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm。r=3dm
S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)
V =S底h =28。26×7 =197。82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三.巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程当中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm。已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)
四.拓展练习
1.一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
五.课堂小结:
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)
六.布置作业
1。A册习题2。7
2。拓展练习2题
教学反思: 本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
圆柱的体积教案11
目标:
1、 理解圆柱体积公式的推导过程,掌握计算公式。
2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。
3、 在公式推导中渗透转化的思想。
重点:
理解圆柱的体积公式的推导过程。
难点:
圆柱体积的计算。
用具:
课件、圆柱模型。
过程:
1、 教师提问。
(1)什么叫物体的体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)
1、 教学例5。
讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)
②通过刚才的实验你发现了什么?
A、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。
B、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。
C、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。
(4)学生根据圆的面积公式的推导过程,进行猜想。
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)通过以上的观察,启发学生说出发现了什么。
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
③用字母表示圆柱的体积公式。(板书:V=Sh)
2、 教学例6。
出示教材第26页例6。
(1)学生读题,理解题意。
(2)教师:要知道能否装下这袋奶,首先要计算出什么?
学生:杯子的容积。
(3)指明要计算杯子的'容积,学生在练习本上完成。
杯子的底面积:3.14×(8÷2)2=50、24(cm2)
杯子的容积:50、24×10=502、4(mL)
答:因为502、4大于498,所以杯子能装下这袋牛奶。
3、 教学例7。
师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)
生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。
生2:我们可以先转化成圆柱,再计算瓶子的容积。
师:怎样转化呢?说说你的想法。
学生可能会说:
瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。
也就是把瓶子的容积转化成了两个圆柱的体积。
……
师:尝试自己解答一下。
学生尝试解答;教师巡视了解情况。
组织学生交流汇报:
瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(mL)
答:这个瓶子的容积是1256mL。
只要学生解答正确就要给予肯定,不强求算法一致。
师:在本节课的学习中,你有哪些收获?
学生可能会说:
利用“转化”可以帮助我们解决问题。
我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。
在五年级时,计算梨的体积也是用了转化的方法。
……
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V=
A类
1、填表。
底面积S(平方米) 高h(米) 圆柱的体积V(立方米)
15 3
6.4 4
2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?
(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)
B类
两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?
(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)
课堂作业新设计
A类:
1、 45 25.6
2、 314平方米 471立方米
B类:
54立方分米
教材习题
第25页“做一做”
1、 75×90=6750(cm3)
2、 3.14×(1÷2)2×10=7.85(m3)
第26页“做一做”
1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不够。
2、 3.14×(0.4÷2)2×5÷0.02≈31(张)
第27页“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL
第28页“练习五”
1、 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL
3、 3.14×(3÷2)2×0.5×2=7.065(m3)
4、 80÷16=5(cm)
5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨
6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
体积:3.14×(6÷2)2×12=339.12(cm3)
表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)
表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
体积:3.14×(14÷2)2×5=769.3(cm3)
7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)
8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL
932、58800 不够
9、 81÷4.5×3=54(dm3)
10、 3.14×(10÷2)2×2=157(cm3)
11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能装满。
12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)
13、 30×10×4÷6=200(cm3)=200(mL)
14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15、 第四个圆柱的体积最小;第一个圆柱的体积最大。
发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。
圆柱的体积教案12
教学目标:
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:
一、情景导入:
1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?
学生:1、比平日多了两个蛋糕。
2、两个蛋糕一个大一个小。
3、蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?
学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?
学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?
学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的.方法并展示。
教师:板书:圆柱的体积
二、课上探究
1、教师:同学们回忆一下我们还学过那些立体图形?
学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?
学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关
师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
生1、圆柱的体积与圆柱的高有关。
生2、圆柱的体积与圆柱的底面积有关。
生3、圆柱的体积与圆柱的底面周长有关。
生4、圆柱的体积与圆柱的底面半径有关。
3、推导圆柱体积公式
①师: 同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?
生: 把圆转化成近似长方形来求面积的。
②师:我们一起来回忆把圆转化成近似长方形的过程,()
师: 你发现了什么?
生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。
③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?
生:把圆柱转化成近似的长方体。
④师用圆柱体演示转换过程,让学生说怎样转换的。
生:把圆柱平均分成16份拼成一个近似的长方体。
⑤师: 为了让大家看的更清楚,我们再演示一下这个转化过程。
再次演示把圆柱等分16等份,拼成近似的长方体。
再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?
生:分成的份数越多,拼成的图形越接近长方体。
⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?
学生分组讨论,汇报:
生:长方体的高和圆柱的高相等。
生:长方体的底面积和圆柱的底面积相等。
⑦师:你是怎么想的?
生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。
⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。
生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径
师:演示 长方体的体积=底面积×高
⑨师:那么圆柱的体积等于什么呢?
生:圆柱的体积=底面积×高
⑩下面我们再一起回忆一下转化的过程,()
让学生独立填答案,汇报:
三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。
圆柱的体积教案13
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的'面积怎样计算?
二、探索交流,解决问题
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题
圆柱的体积教案14
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么
办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。 不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的.教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
二、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
圆柱的体积教案15
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的.体积公式。
二、积极参与 探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、.探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份??),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体() 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示() 。
(2)、底面积是 10平方米,高是2米,体积是( )。
(3)、底面半径是2分米,高是5分米,体积是( )。 2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积
V= 兀r2× h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积
V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积
V=兀(C÷兀÷2) ×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
板书设计:
圆柱的体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除