高一数学必修一教案 2023新高一数学必修一人教版教案

高一数学必修一教案

  作为一名教师,就不得不需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。如何把教案做到重点突出呢?下面是小编收集整理的高一数学必修一教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学必修一教案1

  1.点的位置表示:

  (1)先取一个点O作为基准点,称为原点。取定这个基准点之后,任何一个点P的位置就由O到P的向量唯一表示。称为点P的位置向量,它表示的是点P相对于点O的位置。

  (2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则可唯一地分解为=xe1+ye2的形式,其中x,y是一对实数。(x,y)就是向量的坐标,坐标唯一地表示了向量,从而也唯一地表示了点P.

  2.向量的坐标:

  向量的坐标等于它的终点坐标减去起点坐标。

  3.基本公式:

  (1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的两点,M(x,y)为线段AB的.中点。

  (2)公式:

  ①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.

  ②中点坐标公式

  4.定比分点坐标

  设A,B是两个不同的点,如果点P在直线AB上且=λ,则称λ为点P分有向线段所成的比。

  注意:当P在线段AB之间时,,方向相同,比值λ>0.我们也允许点P在线段AB之外,此时,方向相反,比值λ<0且λ≠-1.当点P与点A重合时λ=0.而点P与点B重合时不可能写成=0的实数倍。

  定比分点坐标公式:已知两点A(x1,y1),B(x2,y2),点P(x,y)分所成的比为λ。则x=x1+λx21+λ,y=y1+λy21+λ。

  重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平均值,即x1+x2+x33,y1+y2+y33.

  一、中点坐标公式的运用

  已知ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角线的交点为E(-3,4),求另外两个顶点C,D的坐标。

  平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求。

  解:设C(x1,y1),D(x2,y2)。

  ∵E为AC的中点,

  ∴-3=x1+42,4=y1+22.

  解得x1=-10,y1=6.

  又∵E为BD的中点,

  ∴-3=5+x22,4=7+y22.

  解得x2=-11,y2=1.

  ∴C的坐标为(-10,6),D点的坐标为(-11,1)。

  若M(x,y)是A(a,b)与B(c,d)的中点,则x=a+c2,y=b+d2.也可理解为A关于M的对称点为B,若求B,则可用变形公式c=2x-a,d=2y-b.

  1-1已知矩形ABCD的两个顶点坐标是A(-1,3),B(-2,4),若它的对角线交点M在x轴上,求另外两个顶点C,D的坐标。

  解:如图,设点M,C,D的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得

  0=y1+32 y1=-3;

  0=y2+42 y2=-4;

  x0=x1-12 x1=2x0+1;

  x0=x2-22 x2=2x0+2.

  又∵|AB|2+|BC|2=|AC|2,

  ∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.

  整理得x0=-5,∴x1=-9,x2=-8

  ∴点C,D的坐标分别为(-9,-3),(-8,-4)。

  二、距离公式的运用

  已知△ABC三个顶点的坐标分别为A(4,1),B(-3,2),C(0,5),则△ABC的周长为()。

  A.42 B.82 C.122 D.162

  利用两点间的距离公式直接求解,然后求和。

  解析:∵ A(4,1),B(-3,2),C(0,5),

  ∴|AB|=(-3-4)2+(2-1)2=50=52,

  |BC|=[0-(-3)]2+(5-2)2=18=32,

  | AC|=(0-4)2+(5-1)2=32=42.

  ∴△ABC的周长为|AB|+|BC|+|AC|

  =52+32+42

  =122.

  答案:C

  (1)熟练掌握两点间的距离公式,并能灵活运用。

  (2)注意公式的结构特征。若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式。

高一数学必修一教案2

  

  1、教学目标

  (1)理解函数的概念;

  (2)了解区间的概念;

  2、目标解析

  (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;

  在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

  

  问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.

  1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

  1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

  设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

  问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应。

  问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

  设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的`归纳、概况的能力。

  问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?

  4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?

  4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?

  4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?

高一数学必修一教案3

  一、教学目标

  掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.

  二、教学重、难点

  1.教学重点:通过探索得到两角差的余弦公式;

  2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.

  三、学法与教学用具

  1.学法:启发式教学

  2.教学用具:多媒体

  四、教学设想:

  (一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?

  根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式

  (二)探讨过程:

  在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)

  展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与xx之间的关系,由此得到,认识两角差余弦公式的结构.

  思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?

  提示:

  1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?

  2、怎样利用向量的数量积的概念的计算公式得到探索结果?

  展示多媒体课件

  比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.

  思考:再利用两角差的`余弦公式得出

  (三)例题讲解

  例1、利用和、差角余弦公式求、的值.

  解:分析:把、构造成两个特殊角的和、差.

  点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.

  例2、已知,是第三象限角,求的值.

  解:因为,由此得

  又因为是第三象限角,所以

  所以

  点评:注意角、的象限,也就是符号问题.

  (四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.

高一数学必修一教案4

  一、教学目标

  1.知识与技能:(1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法:

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观:

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪。

  四、教学过程

  (一)创设情景,揭示课题

  1、由六根火柴最多可搭成几个三角形?(空间:4个)

  2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

  3、展示具有柱、锥、台、球结构特征的空间物体。

  问题:请根据某种标准对以上空间物体进行分类。

  (二)、研探新知

  空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

  旋转体(轴):圆柱、圆锥、圆台、球。

  1、棱柱的结构特征:

  (1)观察棱柱的几何物体以及投影出棱柱的图片,

  思考:它们各自的特点是什么?共同特点是什么?

  (学生讨论)

  (2)棱柱的主要结构特征(棱柱的概念):

  ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

  (3)棱柱的表示法及分类:

  (4)相关概念:底面(底)、侧面、侧棱、顶点。

  2、棱锥、棱台的结构特征:

  (1)实物模型演示,投影图片;

  (2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

  棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

  棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的.部分。

  3、圆柱的结构特征:

  (1)实物模型演示,投影图片——如何得到圆柱?

  (2)根据圆柱的概念、相关概念及圆柱的表示。

  4、圆锥、圆台、球的结构特征:

  (1)实物模型演示,投影图片

  ——如何得到圆锥、圆台、球?

  (2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

  5、柱体、锥体、台体的概念及关系:

  探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

  圆柱、圆锥、圆台呢?

  6、简单组合体的结构特征:

  (1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

  (2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

  (3)列举身边物体,说出它们是由哪些基本几何体组成的。

  (三)排难解惑,发展思维

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (四)巩固深化

  练习:课本P7 练习1、2; 课本P8 习题1.1 第1、2、3、4、5题

  (五)归纳整理:由学生整理学习了哪些内容

高一数学必修一教案5

  教学目标

  1.使学生掌握的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

  (3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.

  2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对的研究,让学生认识到数学的`应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议

  教材分析

  (1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

  (2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.

  (2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一数学必修一教案6

  教学准备  教学目标

  o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·

  o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·

  o通过学生对向量与数量的识别能力的`训练,培养学生认识客观事物的数学本质的能力·

  教学重难点

  教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·

  教学难点:平行向量、相等向量和共线向量的区别和联系·

  教学过程

  (一)向量的概念:我们把既有大小又有方向的量叫向量。

  (二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)

  1、数量与向量有何区别?(数量没有方向而向量有方向)

  2、如何表示向量?

  3、有向线段和线段有何区别和联系?分别可以表示向量的什么?

  4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

  5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

  6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

  7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?

  这时各向量的终点之间有什么关系?

  课后小结

  1、描述向量的两个指标:模和方向·

  2、平面向量的概念和向量的几何表示;

  3、向量的模、零向量、单位向量、平行向量等概念。

高一数学必修一教案7

  一、教材分析

  函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

  本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

  二、重难点分析

  根据对上述对教材的分析及新课程标准的.要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

  三、学情分析

  1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

  2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

  四、目标分析

  1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

  2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

  3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

  五、教法学法

  本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

  学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

  高一必修二数学教案41、教材(教学内容)

  本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

  2、设计理念

  本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

  3、教学目标

  知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

  过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

  情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

  4、重点难点

  重点:任意角三角函数的定义、

  难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

  5、学情分析

  学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

  6、教法分析

  “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

  7、学法分析

  本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高一数学必修一教案8

  教学目的:

  (1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

  (2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  课型:

  新授课

  教学重点:

  集合的交集与并集的概念;

  教学难点:

  集合的交集与并集“是什么”,“为什么”,“怎样做”;

  教学过程:

  一、引入课题

  我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

  思考(P9思考题),引入并集概念。

  二、新课教学

  1、并集

  一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

  记作:A∪B读作:“A并B”

  即:A∪B={x|x∈A,或x∈B}

  Venn图表示:

  说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

  例题1求集合A与B的并集

  ① A={6,8,10,12} B={3,6,9,12}

  ② A={x|-1≤x≤2} B={x|0≤x≤3}

  (过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

  2、交集

  一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

  记作:A∩B读作:“A交B”

  即:A∩B={x|∈A,且x∈B}

  交集的Venn图表示

  说明:两个集合求交集,结果还是一个集合,是由集合A与B的'公共元素组成的集合。

  例题2求集合A与B的交集

  ③ A={6,8,10,12} B={3,6,9,12}

  ④ A={x|-1≤x≤2} B={x|0≤x≤3}

  拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)

  说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集

  3、例题讲解

  例3(P12例1):理解所给集合的含义,可借助venn图分析

  例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

  4、集合基本运算的一些结论:

  A∩B A,A∩B B,A∩A=A,A∩ =,A∩B=B∩A

  A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A

  若A∩B=A,则A B,反之也成立

  若A∪B=B,则A B,反之也成立

  若x∈(A∩B),则x∈A且x∈B

  若x∈(A∪B),则x∈A,或x∈B

高一数学必修一教案9

  一、学习目标

  1)理解对数的概念;

  2)能熟练地进行对数式与指数式的转化.

  二、教学重点和教学难点

  重点:对数的'概念

  难点:对对数概念的理解

  三、知识链接

  1.指数函数:

  2.运算性质:

  四.学习过程:

  阅读课本,解答下面问题:

  1、对数的定义:一般地,如果x的b次幂等于N,即,那么

  数叫做以为底的对数,记作:.

  其中叫做对数的,叫做.

  2、把下列指数式写成对数式

  ①、②、③、

  3、把下列对数式写成指数式

  ①、;②;③;

  阅读课本,解答下面问题:

  4、特殊对数

  通常以为底的对数叫常用对数,并把简记作

  在科学技术中常使用以无理数为底的对数,以为底的对数称为自然对数,并把简记作.

  如:;.

  5、根据对数式与指数式的关系,填写下表中空白处的名称.

  式子名称

  指数式

  对数式

  6、思考交流

高一数学必修一教案10

  教学目的:

  (1)理解函数的奇偶性及其几何意义;

  (2)学会运用函数图象理解和研究函数的性质;

  (3)学会判断函数的奇偶性.

  教学重点:

  函数的奇偶性及其几何意义.

  教学难点:

  判断函数的奇偶性的方法与格式.

  教学过程:

  1、引入课题

  1.实践操作:(也可借助计算机演示)

  取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

  以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;

  问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的`点的坐标有什么特殊的关系?

  答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;

  (2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.

  以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:

  问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?

  答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;

  (2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.

  2.观察思考(教材P39、P40观察思考)

  2、新课教学

  (一)函数的奇偶性定义

  象上面实践操作中的图象关于y轴对称的函数即是偶函数,操作中的图象关于原点对称的函数即是奇函数.

  1.偶函数(evenfunction)

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (学生活动):仿照偶函数的定义给出奇函数的定义

  2.奇函数(oddfunction)

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

  注意:

  函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

  由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

  (二)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;

  奇函数的图象关于原点对称.

  (三)典型例题

  1.判断函数的奇偶性

  例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)

  解:(略)

  总结:利用定义判断函数奇偶性的格式步骤:

  首先确定函数的定义域,并判断其定义域是否关于原点对称;

  确定f(-x)与f(x)的关系;

  作出相应结论:

  若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;

  若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

高一数学必修一教案11

  一、教学目标

  1、知识与技能

  (1)理解直线与圆的位置关系的几何性质;

  (2)利用平面直角坐标系解决直线与圆的位置关系;

  (3)会用“数形结合”的数学思想解决问题、

  2、过程与方法

  用坐标法解决几何问题的步骤:

  第一步:建 立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:将代数运算结果“翻译”成几何结论、

  3、情态与价值观

  让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分 析问题与解决问题的能力、

  二、教学重点、难点:

  重点与难点:直线与圆的方程的应用、

  三、教学设想

  问 题设计意图师生活动

  1、你能说出直线与圆的位置关系吗?启发并引导学生回顾直线与圆的位置关系,从而引入新课、师: 启发学生回顾直线与圆的位置关系,导入新课、

  生:回顾,说出自己的看法、

  2、解决直线与圆的位置关系,你将采用什么方法?

  理解并掌握直线与圆的位置关系的解决办法与数学思想、师:引导学生通过观察图形,回顾所学过的知识,说出解决问题的方法、

  生:回顾、思考、讨论、交流,得到解决问题的方法、

  问 题设计意图师生活动

  3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题

  指导学生从直观认识过渡到数学思想方法的选择、师:指导学生观察教科书上的图形特征,利用平面直角坐标系求解、

  生:自 学例4,并完成练习题1、2、

  师:分析例4并展示解题过程,启发学生利用坐标法求 ,注意给学生留有总结思考的时间、

  4、你能分析一下确定一个圆的方程的要点吗?使学生加深对圆的方程的认识、教师引导学生分析圆的方程中,若横坐标确定,如何求出纵坐标的值、

  5 、你能利用“坐标法”解决例5吗?巩 固“坐标法”,培养学生分析问题与解决问 题的能力、师:引导学生建立适当的平面直角坐标系,用坐标和方程表示相应的几何元素,将平面几何问题转化为代数问题、

  生:建立适当的直角坐标系, 探求解决问题的方法、

  6、完成教科书第140页的练习题2、3、4、使学生熟悉平面几何问题与代数问题的转化,加深“坐标法”的解题步骤、 教师指导学生阅读教材,并解决课本第140页的练习题2、3、4、教师要注意引导学生思考平面几何问题与代数问题相互转化的依据、

  7、你能说出练习题蕴含了什么思想方法吗?反馈学生掌握“坐标法”解决问题的情况,巩固所学知识、学生独立解决第141页习题4、2A第8题,教师组织学生讨论交流、

  8、小结:

  (1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

  生:阅读教科书的例3,并完成第

  问 题设计意图师生活动

  题的需要准备什么工作?

  (2)如何建立直角坐标系,才能易于解决平面几何问题?

  (3)你认为学好“坐标法”解决问题的关键是什么?

  (4)建立不同的平面直角坐标系,对解决问题有什么直接的影响呢?用“坐标法”解决实际问题的作用、 教师引导学生自己归纳总结所学过的知识,组织学生讨论、交流、探究、

高一数学必修一教案12

  教学目标:

  1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

  2、能力目标:通过定义的引入,图像特征的观察。发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题。解决问题的能力。

  3、情感目标:通过学生的参与过程,培养他们手脑并用。多思勤练的良好学习习惯和勇于探索。锲而不舍的治学精神。

  教学重点。难点:

  1、重点:指数函数的图像和性质

  2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体

  动感显示,通过颜色的区别,加深其感性认识。

  教学方法:

  引导——发现教学法。比较法。讨论法

  教学过程:

  一、事例引入

  T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?

  S:————————

  T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的`传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

  C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,——————。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y = 2 x)

  S,T:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),

  从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。

  二、指数函数的定义

  C:定义:函数y = a x(a>0且a≠1)叫做指数函数,x∈R。

  问题1:为何要规定a > 0且a ≠1?

  S:(讨论)

  C:(1)当a<0时,a x有时会没有意义,如a=﹣3时,当x=

  就没有意义;

  (2)当a=0时,a x有时会没有意义,如x= — 2时,

  (3)当a = 1时,函数值y恒等于1,没有研究的必要。

  巩固练习1:

  下列函数哪一项是指数函数

  A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x

高一数学必修一教案13

  一、教学目标

  1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

  二、教学重点:画出简单几何体、简单组合体的三视图;

  难点:识别三视图所表示的空间几何体。

  三、学法指导:观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的.投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的投影图。

  三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15 练习1、2; P20习题1.2 [A组] 2。

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1.2 [A组] 1。

高一数学必修一教案14

  

  一、自主学习

  1. 阅读课本 练习止.

  2. 回答问题

  (1)课本内容分成几个层次?每个层次的中心内容是什么?

  (2)层次间的联系是什么?

  (3)对数函数的定义是什么?

  (4)对数函数与指数函数有什么关系?

  3. 完成 练习

  4. 小结.

  二、方法指导

  1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  2. 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质

  

  一、提问题

  1. 对数函数的自变量和函数分别在指数函数中是什么?

  2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

  3.是否所有的函数都有反函数?试举例说明.

  二、变题目

  1. 试求下列函数的反函数:

  (1) ; (2) ;

  (3) ; (4) .

  2. 求下列函数的定义域:

  (1) ; (2) ; (3) .

  3. 已知 则 = ; 的定义域为 .

  

  1.对数函数的有关概念

  (1)把函数 叫做对数函数, 叫做对数函数的.底数;

  (2)以10为底数的对数函数 为常用对数函数;

  (3)以无理数 为底数的对数函数 为自然对数函数.

  2. 反函数的概念

  在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

  3. 与对数函数有关的定义域的求法:

  4. 举例说明如何求反函数.

  

  一、课外作业: 习题3-5 A组 1,2,3, B组1,

  二、课外思考:

  1. 求定义域: .

  2. 求使函数 的函数值恒为负值的 的取值范围.

高一数学必修一教案15

  一、说课内容:

  苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

  二、教材分析:

  1、教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2、教学目标和要求:

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的`能力.

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

  3、教学重点:对二次函数概念的理解。

  4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  三、教法学法设计:

  1、从创设情境入手,通过知识再现,孕伏教学过程

  2、从学生活动出发,通过以旧引新,顺势教学过程

  3、利用探索、研究手段,通过思维深入,领悟教学过程

  四、教学过程:

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?

  解:s=πr(r>0)

  例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

  通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3、为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以为零?

  由例1可知,b和c均可为零.

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

  这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)+1 (2)

  (3)s=3-2t (4)y=(x+3)- x

  (5) s=10πr (6) y=2+2x

  (8)y=x4+2x2+1(可指出y是关于x2的二次函数)

  理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm。

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

  于x的函数关系式。

  此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

  此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

  在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考:

  本节课你有哪些收获?还有什么不清楚的地方?

  让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置:

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  五、教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除