梯形的面积教案

梯形的面积教案

  作为一位杰出的老师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。教案要怎么写呢?下面是小编帮大家整理的梯形的面积教案,欢迎阅读与收藏。

梯形的面积教案1

  教学思路:

  “梯形面积的计算”是在学生已经熟练掌握了长方形、正方形,尤其是平行四边形、三角形面积计算,和梯形的认识的基础上学习的一个“几何求积”的数学问题。由于在上述学习中,学生已通过操作、实验等积累了探索平面图形面积计算公式的基本方法和策略(剪、移、转、拼等)并初步领悟了“新旧转化”的数学方法,都为学生自主研究、探索“梯形的面积计算”创造必要的条件,打下了良好的基础。基于以上认识,我在导学梯形的面积公式时,并没有沿袭以往的教学思路,而是立足与学生已有的数学现实与经验,以此为出发点,通过引导学生经历“发现问题——提出假设——进行验证——实践应用”,让学生在数学的再创造过程中建构新知,解决问题,获得体验。

  教学目标:

  1、引导学生主动参与探索,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

  2、结合学习过程,培养学生观察、操作、比较、推理等逻辑思维能力和初步的假设、试验和验证等科学探究能力。

  3、进一步培养学生的空间观念,不断发展学生的空间想象力,培养学生的实践能力和创新意识,体验数学再创造的乐趣,并使不同的学生获得个性化的发展。

  教学重、难点:运用转化推导梯形面积的计算公式。

  教具、学具准备一般梯形两个,两个完全一样的梯形,剪刀等。

  教学过程:

  一、自由操作联想,作好新课孕伏。

  师:对于梯形,你们已经知道了什么?(可让学生自由发表)利用你手中的梯形,动手折折、剪剪、拼拼,还能发现些什么?(学生独立操作,在此基础上,在同桌或小组内交流自己的发现)

  生1:我发现任何梯形都可以分成两个三角形;

  生2:我们发现两个完全一样的梯形可以象三角形那样,通过重叠、旋转、平移,转化成一个平行四边形的;

  生3:我们发现将一个梯形沿着它的两条高剪开,分成了两个三角形和一个长方形;

  生4:我们发现梯形可分成一个三角形和一个平行四边形;

  生5:还可以将梯形先剪下一个小三角形,再将剪下的小三角形通过旋转、平移的方法和剩下的图形拼成一个大三角形。

  生6:我们认为还可以将梯形从中间剪开,分成两个梯形,然后将其中的一个梯形通过旋转、平移,和另一个梯形拼成一个平行四边形。(图略)

  生7:在梯形的下面剪去两个小直角三角形,拼到上面,可以拼成一个长方形;

  生8:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

  ……

  师:善于观察、勇于实践,才给同学们带来如此丰富的发现,真了不得!

  [点评:引导自由操作,有利于在宽松环境中激活原有数学经验,为随后有目的的尝试、实验和验证做好铺垫。]

  二、“假设——验证——交流”,体验数学再创造乐趣

  1、假设

  师:请大家再想一想,这些方法都有一个共同之处,你看出来了吗?

  生:都是将梯形转化成了我们已经学过的图形。

  师:同学们将转化后的新的图形与原来的梯形进行比较,看看它们的面积有什么关系?为什么?你能推导出梯形面积的计算公式吗?谈谈你的来推导?

  生2:可不可以象三角形那样,将两个完全一样的梯形拼成一个大平行四边形,再进行推导?

  ……

  [点评:交流对问题的初步设想是准确把握学生已有数学现实的关键,这对教师引导学生进行随后的学习起着关键作用]

  2、验证:

  师:作出的假设是否正确,关键在于能不能经得住实验的验证。请大家借助手头的材料,小组互相合作,大胆试试看,并将结果记录下来。

  (学生独立或合作尝试转化,教师深入倾听,对有困难学生进行必要的提示和启发。)

  [点评:对数学材料实现“再创造”,不仅需要学生的独立思考,同时也需要组员间的相互启发和教师的及时点拨与引导。]

  3、汇报、交流、:

  师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)

  生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。

  因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。

  (掌声)教师表扬。

  生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2。

  生3:我们小组认为:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

  这个梯形的底就是梯形的上下底的和,高就是梯形的高的一半,因为:平行四边形的'面积=底×高,所以:梯形的面积=(上底+下底)×(高÷2)。[教学,尽在天下教!]

  生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。

  生5:我认为可以求出,但不知是否正确?

  师:说说看,说错了也没问题。

  生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。

  师:你很爱动脑筋,想法也很好,请同学们按照这位同学的思路去剪一剪,拼一拼,看看三角形的底与梯形有没有关系?

  生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。

  生7:我们小组将梯形右下方的小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。

  ……

  师:现在我们来一下,通过我们刚才的观察,比较,那么在这些方法中,你最欣赏师:会用字母表示吗?

  生:S=(a+b)h÷2

  师:说一说各字母的意义。

  [点评:通过动手操作,大胆实践,探索出多种方法来推导梯形面积的计算公式,引导学生及时交流,展示个性化的研究思路与成果,整个引导过程都充分发挥了学生的主体作用,使学生真正经历了“操作、观察、”的过程,经历了一个数学再创造的过程,既品尝了成功的体验,又激发了学生的实践欲望和创新能力。]

  三、在实践中拓展、延伸

  1、生尝试练习,帮助理解“横截面”的意义。

  2、说一说计算梯形的面积应注意什么?

  3、想一想,算一算:

  出示圆木图,求圆木的根树。

  4、计算:1+2+3+4+5+6+7+8+9= (想一想,怎样算比较简便)

  [点评:有层次、有坡度、有趣味的练习,既能巩固所学的新知,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生感到数学是有用的,为培养学生的应用意识起到了较好的促进作用。]

  四、全课:

  1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。

  2、还有什么不懂的吗?

  五、作业:(略)

  教后反思:

  探索新型情感性课堂教学,还学生的主体地位。

  新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。” 本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。

梯形的面积教案2

  班级情况及学生特点分析:

  我所任教的五年级二班学生共52人,因为我班的学生基础较差,上课好动,作业拖拉,虽然训练一个学年,但还是不令人十分满意 。因此教学借助多媒体课件及自制学具来激发他们的学习兴趣,设计使学生带着"想知道梯形的面积是多少吗?你用什么方法知道它们的面积呢?"先独立操作,然后再小组交流,集中小组中不同的解法。然后再全班以组进行汇报在教学中我以学生的发展为着眼点,大力培养学生的综合能力,拓宽学生视野,改变学生的方式,逐渐尝试建立发现问题――自主探究--解释应用的教学模式,确立以学生为主体的探索性学习方式。

  教学内容:梯形面积的计算。

  教学内容分析:

  本节课是北师大教材五年级上册第二单元“图形的面积”中的一课时,教学内容是梯形的面积计算。梯形的面积是在学生掌握基本平面图形的特征和求三角形、平行四边形面积的基础上的进一步扩展,教材这样安排的目的是通过学生观察比较的活动,让每个学生懂得面积计算方法的多样化。同时,也让他们掌握梯形的面积计算公式的来源。这样,也为学生自己探索基本图形面积计算打下基础。

  教学目标:

  1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

  2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

  3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的'。

  教学重点:理解、掌握梯形面积的计算公式。

  教学难点:理解梯形面积公式的推导过程。

  教学课时:1课时

  教学准备:

  1. 学生准备两个完全一样的梯形。

  2. 老师准备多媒体课件。

  教学过程:

  1.导入新课

  (1)投影出示一个三角形,提问:

  这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

  (2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

  (3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

  2.新课展开

  第一层次,推导公式

  (1)操作学具

  ①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

  ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

  ③指名学生操作演示。

  ④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。

  (2)观察思考

  ①教师提出问题引导学生观察。

  a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

  b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?

  (3)反馈交流,推导公式。

  ①学生回答上述问题。

  ②师生共同总结梯形面积的计算公式。

  板书:梯形的面积=(上底+下底)×高÷2

  ③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

  学生回答后,教师板书:“S=(a+b)h÷2”。

  第二层次,深化认识。

  (1)启发学生回忆平行四边形面积公式的推导方法。

  ①提问:想一想平行四边形面积公式是怎样推导得到的?

  ②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

  (2)引导操作。

  ①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

  ②学生动手操作、探究、讨论,教师作适当指导。

  (3)信息反馈,扩展思路。

  说一说你是怎样割补的?教师展示各种割补方法。

  第三层次,公式应用。

  (1)出示课本第89页的例题,教师指导学生理解“横截面”。

  (2)学生尝试解答。

  (3)展示台出示例题的解答,反馈矫正。

  (4)完成例题下面的“做一做”。

  3.巩固练习

  (1)完成练习十七第1、2和3题。

  (2)讨论完成练习十七第4和6题。

  4.全课小结

  这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。

  课后反思:

  !《梯形面积的计算》教学反思

  在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

  一、提出问题,激发兴趣

  我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

  二、注重合作,促进交流

  学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

  这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”

  学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

  三、思维拓展,能力提升

  新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

  开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

  很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

  由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

梯形的面积教案3

  教学内容:梯形面积的计算

  教学目标:

  1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

  2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

  3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

  教学重点、难点和关键:

  教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的'推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

  教具、学具准备:

  教师准备多媒体课件、学生备用梯形硬纸片。

  教学过程:

  一、复习引入:

  1、复习:

  同学们会计算哪些图形的面积?

  计算下列图形的面积:多媒体出示。

  2、引入:

  屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

  3、回忆旧知

  我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

  我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

  二、探索解决问题办法,并尝试转化

  1、引导学生提出解决问题方案

  我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

  你准备用什么方法把梯形转化为我们学过的图形?

  2、学生尝试转化

  刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

  学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

  那么,用拼摆的方法呢,你准备怎样来拼?

  学生上台演示。

  3、学生操作、实施转化

  学生以四人小组为单位,拼摆梯形。

  请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

  谁来说一说,你是怎样拼的?多媒体课件演示。

  三、观察图形,推导公式:

  1、观察

  同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

  它们的底、高和面积,大小怎样呢?小组讨论。

  学生总结汇报后多媒体课件演示。

  2、计算梯形面积

  平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

  算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

  计算面积,学生口述,教师板书。

  3、推导梯形面积公式

  算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

  用字母表示梯形面积公式

  阅读教材,加深理解

  四、应用公式计算梯形面积

  1、基本练习:

  计算下面梯形面积

  2、教学例题

  出示例题并理解题意。

  计算面积,一人板演,全班齐练。

  3、判断题

  4、抢答题

  5、测量并计算

  五、总结课堂

  《梯形的面积》教学反思

  教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

  本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:

  一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

  二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的`密切联系,真正体现了数学“于生活,回归于生活”的思想。

  三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。

  介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。

  应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。

梯形的面积教案4

  教学内容:练习十九的第11~15题。

  教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

  教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。

  教学过程:

  一、复习平行四边形、三角形、梯形面积的计算公式。

  出示下列图形:

  问:这3个图形分别是什么形?(平行四边形、三角形和梯形)

  平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

  平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)

  三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

  为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)

  梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

  梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)

  量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

  二、做练习十九中的题目。

  1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的'讲解。

  2、第13题和第15题,让学生独立计算,做完后集体订正。

  3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?

  这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

  4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

  三、作业。

  练习十九第11题和第14题。

  课后小结:

梯形的面积教案5

  教学内容:完成第21页练习四

  教学目标:

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学过程:

  练习四

  一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的.。

  二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

  三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

  四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

  五、针对学生在学习过程中出现的问题适当的进行补充和强化。

梯形的面积教案6

  一、 教学目标

  1、 在实际情境中,认识计算梯形面积的必要性。

  2、 在自主探索活动中,经历推导梯形面积公式的过程。

  3、 运用梯形面积的计算公式,解决相应的实际问题。

  二、 重点难点

  重点:梯形面积公式的推导过程。

  难点:能运用梯形面积的计算公式,解决相应的实际问题。

  三、 教学准备

  相等梯形若干个、小剪刀、挂图

  四、 教学设计

  (一)复习旧知,铺垫引导

  1、 前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)

  2、 把不知道的转化成知道的从而得出结论,是我们常用的探究新知的方法。

  (二)揭示课题,探索新知

  1、 出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)

  2、 今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)

  3、 下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)

  4、 小组内交流方法。

  5、 学生汇报,教师总结。

  (1)平移法

  用两个大小完全一致的梯形。经过旋转、平移组成平行四边形。

  (2)分割法

  将梯形分割成两个三角形。

  (3)割补法

  取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。

  得出结论: 梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  (三)巩固练习

  1、 P28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

  2、 P28练一练1题,继续巩固练习。

  (四)总结全文

  1、 这节课我们学习了什么?

  2、 梯形面积公式的.推导〈梯形面积=(上底+下底)高2〉

  五、 板书设计

  梯形的面积

  梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  六、 教学反思

  本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。

梯形的面积教案7

  教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教具准备:

  1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

  2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

  3、学生将教科书第147页上面的两个梯形剪下来。

  教学过程:  一、复习。

  出示三角形图。

  问:三角形的面积怎样求?

  这个三角形的面积是多少?

  三角形的面积计算公式我们是怎样推导出来的?

  怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

  师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

  二、新课。

  1.教学梯形面积的计算公式。

  出示教科书第80页上面的梯形图。

  问:这个图形是什么形?(梯形)

  师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

  问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

  教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

  问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

  两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的`一半)

  平行四边形的底等于什么?(等于梯形的上底、下底之和)

  平行四边形的高和梯形的高有什么关系?(相等)

  平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

  一个梯形的面积怎样算?(提示学生回答,

  教师板书:(3+5)×4÷2

  =8×4÷2

  =32÷2

  =16(平方厘米)

  师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

  问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

  平行四边形的高是什么?(就是梯形的高)

  板书:

  平行四边形的面积=(上底+下底)×高

  梯形的面积=(上底+下底)×高÷2

  如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

  S=(a+b)×h÷2

  问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

  2.应用出的梯形面积公式计算梯形面积。

  (1)出示第81页例题。

  指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

  问:这个梯形的上底是多少?下底呢?

  这个梯形的高是多少?

  梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

  (2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

  三、巩固练习。

  练习十九第1、2题。

  四、作业。

  练习十九第3、4题。

  课后:

梯形的面积教案8

  教学目标:

  1. 使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

  2. 使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

  3. 培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

  教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。

  教学难点: 梯形面积计算方法的推导过程。

  教学准备: 多媒体课件

  教学过程:

  一. 复习引入。

  1. 同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

  2. 计算下面图形的面积。(单位:厘米)

  3. 我们先看第一个图形,它的面积是多少?(300平方厘米)

  你是怎样计算的?(20xx=300)

  你的根据是什么?(平行四边形的面积=底高)

  你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

  4. 那么第二个图形的面积是多少呢?(36平方厘米)

  你是怎样计算的?(1262=36)

  你的根据是什么?(三角形的面积=底高2)

  你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180o,再沿边平移上去,这样就拼成了一个平行四边形。)

  5. 出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

  二. 新课传授。

  (一)面积计算方法的推导过程。

  1. 今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

  你怎么知道它是梯形?(只有一组对边平行)

  2. 提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

  3. 学生动手操作,分别展示成果。

  (1)

  请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)

  现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

  (2)

  请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)

  现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

  (3)

  请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)

  现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的.三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

  4. 我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

  5. 你是怎么得出这个规律的?

  6. 揭示规律并板书:梯形面积=(上底+下底)高2

  你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)

  现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h2)

  7. 经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?

  三. 巩固练习。

  1. 找出梯形的上底、下底和高并计算面积。(单位:厘米)

  2. 量出自己准备的梯形的上底、下底、高,求出它的面积。

  从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?

  四、课堂总结。

  1. 这节课你学到了什么?

  2. 你还有什么样的问题吗?

梯形的面积教案9

  教材分析

  “梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。

  学情分析

  本课以小组合作,动手操作为主教学,这样设计有利于全班参与,更为学困生提供了思考的机会。其次有利于学生间的充分交流与合作,为探索出更多的方法提供了机会。

  教学目标

  1.在实际情境中,认识计算梯形面积的必要性。

  2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

  3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

  4.通过小组合作学习,培养学生合作学习的能力。

  教学重点和难点

  教学重点:探索并掌握梯形面积是本节课的重点

  教学难点:理解梯形面积计算公式的推导过程是本课的难点。

  教学流程示意

  (一)、复习旧知

  本环节由点开始学生就展开想象,在兴趣盎然的.状态中打开了思维,轻松自然的引出各种已学平面图形的面积。

  (二)、探究新知

  此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。

  (三)深化巩固

  运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。

梯形的面积教案10

  教学目的:

  使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  教学重点:

  应用所学的知识解决一些实际问题。

  教学准备:

  实物投影仪等。

  练习过程:  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的`进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)3.11.82.02.0

  渠底宽(米)1.51.21.00.8

  渠深(米)0.80.80.50.6

  横截面面积

  (平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

梯形的面积教案11

  练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  练习重点:应用所学的知识解决一些实际问题。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习十八第6题,名数的改写。

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的'面积,集体订正。

  三、课堂练习

  1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)

  3.1

  1.8

  2.0

  2.0

  渠底宽(米)

  1.5

  1.2

  1.0

  0.8

  渠深(米)

  0.8

  0.8

  0.5

  0.6

  横截面面积(平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  四、作业

  练习十九第9题。

梯形的面积教案12

  教材第134页复习第12~15题。

  

  位的换算。

  

  一、揭示课题

  我们今天复习平行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求平行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。

  二、复习面积单位

  1、(1)我们学过哪些面积单位?并按一定州顺序排列。

  (2)每相邻两个面积单位间的进率各是多少?

  2、练习做期末复习第12题。

  学生做,并说计算过程。

  三、复习平行四边形、三角形和梯形的面积计算及其联系

  1、说一说这三种图形面积计算公式是什么?并说一说每个图形的'面积是怎样推导出来的?

  2、我们在学习平行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。

  3、把长方形、正方形、平行四边形、三角形和梯形之间的联系

  用图表示出来。

  (1) 学生画图:

  (2)从图上可以看出,谁的面积是基础?

  4、(1)练习做期末复习第14题。

  学生计算后反馈。

  (2)填空:

  ①一个三角形和一个平行四边形等底等高,如果三角形的面积是60平方米,那么平行四边形面积是( )平方米;如果平行四边形面积是60平方米,那么三角形的面积是( )平方米。

  ②一个三角形底不变,高扩大3倍,面积( )倍。

  ③一个平行四边形底扩大16倍,高缩小2倍,面积就( )倍。

  (3)应用题练习,期末复习第15题。

  注意第(2)题单位不统一,先统一单位后再解答。

  四、复习土地面积单位

  1、(1)计算土地面积常用的单位有哪些?

  (2)1平方千米,1公顷各有多大?

  (3)测量土地时,一般用什么作长度单位?算出面积是多少平方米后,再换算成公顷或平方千米。

  2、应用题:

  (1)一个平行四边形果园,占地3公顷,它的底是400米,高是多少米?

  学生做完后,师问:这题要注意什么?

  (2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨?

  反馈时,说明最后结果单位要统一成吨。

  3、综合练习:做期末复习第13题。

  在书上做并说明理由。

  五、全课总结

  这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出平等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。

  

  补充

  1、判断:

  (1)两个完全一样的直角三角形能拼成平行四边形。( )

  (2)两个面积相等的三角形一定等底等高。 ( )

  (3)62=62=12。 ( )

  (4)40公顷4平方千米。( )

  2、一块平行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,平均每公顷收籽棉多少克?

  3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少平方分米?

梯形的面积教案13

  教学内容

  人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,

  教学目标

  一、知识与技能

  通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

  二、过程与方法

  能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  三、情感态度与价值观

  让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

  教学重点

  掌握梯形面积的计算公式,并会用公式解决实际问题。

  教学难点

  理解梯形面积公式推导方法的多样化,体会转化的思想。

  考点分析

  会用梯形面积公式解决实际问题。

  教学目标

  《新课标》指出:学生有效的教学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。要做到把生活经验数学化,数学问题生活化。变课堂教学为课堂生活,就必须把握教学规律、用活教材。故而,教师应向学生提供充分从事教学活动的机会,帮助他们在自主探索与合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,并获得数学活动经验。根据这一教学理念,本课采用主导-主 体 相 结 合为 特 征 的 探 究 性 教 学 模 式 ,让 学生 在 观 察 、猜 想 、验 证 、归 纳 、交 流 中 获得新知并提高能力。

  教材分析

  本节课是(人教版)义务教育课程标准实验教科书五年级上册第六单元的内容,是在学生掌握认识梯形特征,学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。同时又是 对 前 面 所学 的长方 形 、正方 形 、平 行 四 边 形 和 三角 形 面 积 知 识 的 发 展 、巩固和应用,梯形的面积是小学阶段的几何知识的重要内容,为后面的组合图形的求积知识以及进一步学习立体几何知识做好铺垫。学习梯形的面积能够较好地培养学生运用知识解决实际问题的本领,培养学生的思能力和空间观念,提高学生的数学素质。

  学情分析

  通过前面的学习,学生已经在动手剪拼中掌握了平行四边形和三角形面积公式的推导过程,并初步掌握了研究问题的基本思路,体会到了转化的思想,尤其是在学习过三角形的`面积之后,学生对用两个完全一样的图形拼成一个新的已学过的图形的计算方法已初步掌握,这为本课学习求梯形面积的思想方法打下了基础,所以教学时一定要放手指导学生根据旧知识自己发现规律,在掌握运用规律的同时发展学生的思维。

  专家建议

  五年级的学生已对图形有力基本的认识,具备了一定的学习能力,能够初步利用生活中的经验及已有的知识基础,但是学生的抽象能力与归纳理解能力都是在实物的表象层次上,所以讲授时要结合生活实际,让学生理解本章节知识与生活的联系。

  教学方法

  游戏引入新知讲授巩固总结练习提高

  教学用具

  课件、多组两个完全相同的梯形。

  教学过程

  一、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  通过旧知迁移引出新课。

  教师:同学们还记得平行四边形和三角形的面积怎么求吗?

  指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

  课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

  教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

  根据学生的回答,引出新课,梯形的面积。

  板书课题--梯形的面积。

  二、新知探究

  师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  请同学们打开学具袋,看看里面的梯形有什么特点?

  生:各种梯形,每种两个,每种梯形颜色一样。

梯形的面积教案14

  教学内容:

  小学数学第七册74—75页的内容

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积,数学教案-梯形面积计算。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的.方法解决实际问题的能力。

  教学重点、难点:

  理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:

  课件。

  教学过程:

  (一)复习旧知,做好铺垫。

  1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

  2、练习(出示)

  口答下面各图形的面积。(单位:厘米)

  (二)创设情景,提出问题

  师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

  师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

  师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

  (三)小组学习,解决问题。

  师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

  合作要求:

  (1)想一想:我们已经学过哪几种图形的面积公式?

  (2)试一试:把梯形转化成已经学过的图形,小学数学教案《数学教案-梯形面积计算》。(任选一种)

  (3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

  (4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

  全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

  教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

  师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

  师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

  课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

  让学生独立计算,在集体订正。

  师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

  (四)应用拓展,巩固知识。

  师:下面我们来做练习吧。

  1、一☆练习

  a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

  b.课件出示:P75做一做,由学生独立完成,集体订正。

  c.课件出示:判断

  1)两个梯形能拼成一个平行四边形。( )

  2)平行四边形的面积是梯形面积的2倍。( )

  让学生独立判断,并说明理由。

  2、二☆练习

  a.课件出示:

  一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

  b.课件出示:

  我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

  (顶层根数+底层根数)×层数÷2

  想一想是什么道理,并算出图中圆木的总根数。

  3、三☆练习

  课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

  学生独立解答,再交流。

  (五)小结全课,结束教学

  让学生讲讲这节课的收获,并布置作业。

  有时间的话做“思考”

  在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

梯形的面积教案15

  重点难点

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学准备

  含资料辑录或图表绘制

  教和学的过程

  一、练习

  二、

  练习

  一、第2题

  让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

  二、第3题

  右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的`那条腰的长度就是梯形的高。

  三、第5题

  要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

  四、第6题

  先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

  五、针对学生在学习过程中出现的问题适当的进行补充和强化。

  通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除