初中数学菱形的几何知识点

初中数学菱形的几何知识点

  上学期间,大家都背过各种知识点吧?知识点有时候特指教科书上或考试的知识。掌握知识点是我们提高成绩的关键!下面是小编帮大家整理的初中数学菱形的几何知识点,欢迎阅读与收藏。

  菱形在现实生活中应用很多,手帕纸,拉门,衣帽架,红色的贴图(如“福”)等。

  菱形

  在一个平面内,一组邻边相等的平行四边形是菱形(rhombus)。对角线相互垂直的平行四边形是菱形(rhombus)

  菱形的特殊性质

  1、对角线互相垂直且平分,并且每条对角线平分一组对角;

  2、四条边都相等;

  3、对角相等,邻角互补;

  4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,

  5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号三倍。

  6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。

  菱形的判定 在同一平面内,

  1、一组邻边相等的平行四边形是菱形。

  2、四边相等的四边形是菱形。

  3、对角线互相垂直的平行四边形是菱形。

  4,对角线互相垂直平分的四边形是菱形。

  依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。

  菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

  菱形面积 (1) S=底×高(即菱形的面积等于底乘以高);

  (2) S=1/2(对角线×对角线)(即菱形的面积也等于对角线乘积的一半) ;

  (3) 设菱形的边长为a,一个夹角为θ,则面积公式是:S=a^2·sinθ。

  计算机图形学约束

  菱形必须一条对角线与x轴平行,另一条对角线与Y轴平行。不满足此条件的几何学菱形在计算机图形学上视作一般四边形。

  四条边都相等的四边形是菱形,同时也是正方形。正方形是特殊的菱形。

  菱形

  1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。

  2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;

  ⑵ 菱形的四条边都相等;

  ⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  ⑷ 菱形是轴对称图形。

  提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,

  可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

  3、菱形的判定方法:

  ⑴ 定义:一组邻边相等的平行四边形是菱形。

  ⑵ 判断方法1:对角线互相垂直的平行四边形是菱形。

  ⑶ 判断方法2:四条边相等的四边形是菱形。

  4、菱形面积的计算:

  菱形面积 = 底×高 = 对角线长乘积的一半 S菱形=1/2×ab(a、b为两条对角线)

  归纳:对角线互相垂直的四边形的面积等于对角线长乘积的一半。

  希望上面对菱形知识点的总结学习,同学们都能很好的掌握,相信同学们一定能很好的参加考试工作。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除