数轴教案 数轴教案人教版优秀

数轴教案(精选3篇)

  作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么问题来了,教案应该怎么写?下面是小编为大家收集的数轴教案(精选3篇),欢迎阅读与收藏。

  数轴教案1

  学习目标

  1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

  2.了解数形结合的数学思想。

  3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

  4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

  重点:是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

  难点:数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

  教学过程

  一、自主学习

  (一)、自学课文

  (二)、导学练习

  1.有理数包括哪些数?0是正数还是负数?

  2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

  3.思考:

  ①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。

  ②什么叫数轴?数轴要具备哪三个要素?

  ③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

  ④表示+2的点在什么位置?表示-3的点在什么位置?

  ⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

  4.数轴的画法,有哪几个步骤?

  5.我们还可以更简便的得出数轴的定义:规定了 、 和 的直线叫做数轴。 、 和 是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

  6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数, 的数总比 的数大。

  进一步观察数轴,发现所有的负数都在“0”的 ,所有的正数都在“0”的 ,这说明什么?

  正数都 0;负数都 0;正数 一切负数。

  (三)自学疑难摘要

  组长检查等级:

  二合作探究

  1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

  2.把下面各小题的数分别表示在三条数轴上:

  (1)2,-1,0,,+3.5

  (2)-5,0,+5,15,20;

  (3)-1500,-500,0,500,1000。

  想想看,第(3)小题数据比较大,那怎样表示呢?

  3.把下列各组数用“<”号连接起来.

  (1)–10,2,–14;

  (2)–100,0,0.01;

  (3)–4.75,3.75。

  三、展示提升

  1、每个同学自主完成二中的练习后先在小组内交流讨论。

  2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

  3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

  四、反馈与检测

  1.判断下图中所画的数轴是否正确?

  (1)

  2.下面数轴上的点A、B、C、D、E分别表示什么数?

  (2)

  3.将-3、1.5、、-6、2.25、、-5、1各数用数轴上的点表示出来。

  4.画一条数轴,并在上面标出下列的点。

  ±100±200±300

  数轴教案2

  学习目标

  1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

  2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

  3.感受点在数轴上左右运动时,所表示数的大小变化。

  导学提纲

  1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;

  并比较-3与-1与1的大小关系.

  2.观察数轴,比较正数、负数、0的大小关系。

  展示交流

  活动一:

  1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由。

  2. 2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2; -1、0和-3,-4的点,它们的位置关系如何?

  3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

  活动二:

  1.比较下列各组数的大小

  (1)5和0 (2)-0.5和0 (3)-3、0、1.5 (4) -3.5和-0.5

  2.在数轴上画出下列各数的点,并用“<”将它们连接起来。

  4 , -2.5 , 0 , -4.5 ,

  盘点收获

  课堂反馈

  1.课本P18-19 练一练 1、2、3

  2.在数轴上,到原点距离不大于2的所有整数是 ;

  3.如图,在数轴上有三个点A、B、C,请回答:

  (1)将点B向左移动3个单位后,三个点所表示的数谁最小?

  (2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

  (3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

  (4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

  迁移创新

  利用数轴回答:

  (1)写出所有不大于4且大于-3的整数: ;

  (2)不小于-4的非正整数是 ;

  (3)比-2大 的数是 ;-3比-6大 。

  【堂作业

  课本P19 习题 3 、4

  数轴教案3

  教学重点与难点

  教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

  教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思考方法是本节课的教学难点。

  教学目标

  1、理解数轴的概念,会画数轴;

  2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

  3、通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

  教材处理

  本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

  教学方法

  通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

  教学过程

  一、问题解决 引入实例

  (设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

  问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

  学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

  二、提出问题感受特征

  问题2:怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

  规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的.点表示出来。

  问题3:你还能举出生活中用直线上的点表示数的例子吗?

  学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……。

  可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

  (教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体

  方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

  三、适时命名 学生定义

  1.引入数轴概念

  (设计说明:由直观认识到理性认识,引导学生建立数轴概念)

  通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

  一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

  2、揭示数轴内涵

  (设计说明:让学生在动手操作中探索数轴的三要素)

  四、提炼总结 规范定义

  问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

  可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

  (1)数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

  (2)数轴三要素

  ①原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

  ②正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

  ③单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

  五、定义辨析 练习巩固

  (设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,形成初步技能。)

  1、下列图形哪些是数轴,哪些不是,为什么?

  2、(1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;

  (2)画一条数轴,并表示出如下各点:1000,5000,-2000;

  (3)在数轴上标出到原点的举例小于3的整数;

  (4)在数轴上标出-5和+5之间的所有整数。

  (教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

  六、反思总结 情意发展

  (设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)问题1:什么是数轴?

  问题2:如何画数轴?

  问题3:如何在数轴上表示有理数?

  (教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

  七、布置作业

  1、课本18页习题1.2第2题

  2、指出下面数轴上A、B、C、D各点所表示的数

  3、数轴上的点p与表示有理数3的点A的距离是2

  (1)试确定点p表示的有理数;

  (2)将点A向右移2个单位到点B,点B表示的有理数是多少?

  (3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

  (教学说明:及时作业是巩固课堂学习知识的重要环节,由于课本提供练习较少,因此作适当的补充。同时也为下节课的学习作铺垫。)

  设计说明:

  数轴是数形转化、数形结合的重要媒介,也是学生难以理解的一个难点,对学生来说,将数和形结合在一起是非常抽象的,因此,教学过程从贴近学生的实际出发,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现了从感性认识到理性认识到抽象概括地认识规律。

  教学过程突出了情景—抽象---概括的主线,体现了从特殊到一般研究问题的方法,注意从学生已有的知识经验出发,充分发挥学生的主体意识,让学生主动参与到学习活动之中,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的精神。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除