方差的计算公式是什么

高中方差的计算公式是什么

方差是我们学习应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。下面小编给大家整理了关于方差的计算公式是什么的内容,欢迎阅读,内容仅供参考!

方差计算公式

方差是各个数据与其算术平均数的离差平方和的平均数,在实际计算中,我们用以下公式计算方差。

常见方差公式

(1)设c是常数,则D(c)=0。

(2)设X是随机变量,c是常数,则有D(cX)=(c?)D(X)。

(3)设X与Y是两个随机变量,则

D(X+Y)=D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}

特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),

则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。

(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。

(5)D(aX+bY)=a?DX+b?DY+2abE{[X-E(X)][Y-E(Y)]}。

方差是什么

方差是指一组数据中的各个数减这组数据的平均数的平方和的平均数,如(1,2,3,4,5)这组数据的方差,就先求出这组数据的平均数(1+2+3+4+5)÷5=3,然后再求各个数与平均数的差的平方和,用(1-3)?+(2-3)?+(3-3)?+(4-3)?+(5-3)?=10,再求平均数10÷5=2,即这组数据的方差为2。

方差越大越稳定还是越小越稳定

方差越小,数据越稳定。例如,1.1.2.2,波动大,方差为0.25;而1.1.1.1,没有波动,方差就是0。所以方差越小越稳定。

方差、标准差、协方差的区别

1、概念不同

统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根;协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。

2、计算方法不同方差的计算公式为

式中的s?表示方差,x1、x2、x3、.......、xn表示样本中的各个数据,M表示样本平均数;

标准差=方差的算术平方根=s=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/n);

协方差计算公式为:Cov(X,Y)=E[XY]-E[X]E[Y],其中E[X]与E[Y]是两个实随机变量X与Y的期望值。

3、意义不同

方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;

而协方差是对2组数据进行统计的,反映的是2组数据之间的相关性。

方差、标准差、和协方差之间的联系与区别

1.方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;而协方差是对2维数据进行的,反映的是2组数据之间的相关性。

2.标准差和均值的量纲(单位)是一致的,在描述一个波动范围时标准差比方差更方便。方差可以看成是协方差的一种特殊情况,即2组数据完全相同。

3.协方差只表示线性相关的方向,取值正无穷到负无穷。

4.协方差只是说明了线性相关的方向,说不能说明线性相关的程度,若衡量相关程度,则使用相关系数。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除