初一数学几何证明题的常见解题方法3篇 初一数学几何证明题方法

初一数学几何证明题的常见解题方法1

  1)D是三角形ABC的BC边上的点 且CD=AB,角ADB=角BAD,AE是三角形ABD的中线,求证AC=2AE。

  (2)在直角三角形ABC中,角C=90度,BD是角B的*分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG*行AB,交BC于F,交AC于G。求证CD=GA。

  延长AE至F,使AE=EF。BE=ED,对顶角。证明ABE全等于DEF。=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。角ADE=BAD+B=ADB+EDF。AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。

  题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵ AE是三角形ABD的中线,F是AB边上中点。∴ EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。∵ ∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴ △AFE∽△CDA∴ AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵ ∠ACB=90°=∠DHB,且BD是角B的*分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴ △DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵ DH⊥AB,CE⊥AB;∴ DH∥CE,得∠HDB=∠COD=∠CDB,△CDO为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边*行且相等,则四边形CDHO为*行四边形,HO∥CD且HO=CD∵ GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为*行四边形,HO=FA∴ CD=FA得证

  有很多题

  1.已知在三角形ABC中,BE,CF分别是角*分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z

  证明;过E点分别作AB,BC上的高交AB,BC于M,N点.

  过F点分别作AC,BC上的高交于P,Q点.

  根据角*分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.

  过D点做BC上的高交BC于O点.

  过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.

  则X=DO,Y=HY,Z=DJ.

  因为D 是中点,角ANE=角AHD=90度.所以HD*行ME,ME=2HD

  同理可证FP=2DJ。

  又因为FQ=FP,EM=EN.

  FQ=2DJ,EN=2HD。

  又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN

  又因为

  FQ=2DJ,EN=2HD。所以DO=HD+JD。

  因为X=DO,Y=HY,Z=DJ.所以x=y+z。

  2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。

  当∠BON=108°时。BM=CN还成立

  证明;如图5连结BD、CE.

  在△BCI)和△CDE中

  ∵BC=CD, ∠BCD=∠CDE=108°,CD=DE

  ∴ΔBCD≌ ΔCDE

  ∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN

  ∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN

  ∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°

  ∴∠MBC=∠NCD

  又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN

  ∴ΔBDM≌ ΔCNE ∴BM=CN

  3.三角形ABC中,AB=AC,角A=58°,AB的垂直*分线交AC与N,则角NBC=( )

  3°

  因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。

  因为AB的垂直*分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN

  所以 ∠NBD=58°,所以∠NBC=61°-58°=3°

  4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ

  延长CB到M,使BM=DQ,连接MA

  ∵MB=DQ AB=AD ∠ABM=∠D=RT∠

  ∴三角形AMB≌三角形AQD

  ∴AM=AQ ∠MAB=∠DAQ

  ∴∠MAP=∠MAB+∠PAB=45度=∠PAQ

  ∵∠MAP=∠PAQ

  AM=AQ AP为公共边

  ∴三角形AMP≌三角形AQP

  ∴MP=PQ

  ∴MB+PB=PQ

  ∴PQ=PB+DQ

  5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP

  ∵直角△BMP∽△CBP

  ∴PB/PC=MB/BC

  ∵MB=BN

  正方形BC=DC

  ∴PB/PC=BN/CD

  ∵∠PBC=∠PCD

  ∴△PBN∽△PCD

  ∴∠BPN=∠CPD

  ∵BP⊥MC

  ∴∠BPN+∠NPC=90°

  ∴∠CPD+∠NPC=90°

  ∴DP⊥NP。

初一数学几何证明题的常见解题方法2

  一要审题。

  很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

  二要记。

  这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

  三要引申。

  难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要*时的积累,*时在课堂上学的基本知识点掌握牢固,*时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的'积累,便于以后难题的学习

  四要分析综合法。

  分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.*行线里同位角相等、内错角相等3.余角、补角定理4.角*分线定义5.等腰三角形6.全等三角形的对应角等等方法。)结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

  五要归纳总结。

  很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。


初一数学几何证明题的常见解题方法3篇扩展阅读


初一数学几何证明题的常见解题方法3篇(扩展1)

——中考数学几何证明题3篇

中考数学几何证明题1

  在?ABCD中,∠BAD的*分线交直线BC于点E,交直线DC于点F.

  (1)在图1中证明CE=CF;

  (2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;

  第一个问我会,求第二个问。。需要过程,快呀!!

  连接GC、BG

  ∵四边形ABCD为*行四边形,∠ABC=90°

  ∴四边形ABCD为矩形

  ∵AF*分∠BAD

  ∴∠DAF=∠BAF=45°

  ∵∠DCB=90°,DF∥AB

  ∴∠DFA=45°,∠ECF=90°

  ∴△ECF为等腰Rt△

  ∵G为EF中点

  ∴EG=CG=FG

  ∵△ABE为等腰Rt△,AB=DC

  ∴BE=DC

  ∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°

  ∴△BEG≌△DCG

  ∴BG=DG

  ∵CG⊥EF→∠DGC+∠DGB=90°

  又∵∠DGC=∠BGE

  ∴∠BGE+∠DGB=90°

  ∴△DGB为等腰Rt△

  ∴∠BDG=45°

  分析已知、求证与图形,探索证明的思路。

中考数学几何证明题2

  1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )

  A.(45,77) B.(45,39) C.(32,46) D.(32,23)

  [解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33…… 分别计作a1,a2,a3,a4,a5……an, an表示第n组的第一个数,

  a1 =1

  a2 = a1+2

  a3 = a2+2+4×1

  a4 = a3+2+4×2

  a5 = a4+2+4×3

  ……

  an = an-1+2+4×(n-2)

  将上面各等式左右分别相加得:

  a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),

  当n=45时,a n = 3873 > 2013 ,2013不在第45组

  当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46,   A2013=(32,46).

  如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,

  31<1006 <32,32

  (注意区别an和An)

  2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做*行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做*行四边形AO1C2B;…;依此类推,则*行四边形AO4C5B的面积为(  )

  A. cm2 B. cm2 C. cm2 D. cm2

  考点:矩形的性质;*行四边形的性质.

  专题:规律型.

  分析:根据矩形的对角线互相*分,*行四边形的对角线互相*分可得下一个图形的面积是上一个图形的面积的,然后求解即可.

  解答:解:设矩形ABCD的面积为S=20cm2,

  ∵O为矩形ABCD的对角线的交点,

  ∴*行四边形AOC1B底边AB上的高等于BC的,

  ∴*行四边形AOC1B的面积=S,

  ∵*行四边形AOC1B的对角线交于点O1,

  ∴*行四边形AO1C2B的边AB上的高等于*行四边形AOC1B底边AB上的高的,

  ∴*行四边形AO1C2B的面积=×S= ,

初一几何证明题思路


初一数学几何证明题的常见解题方法3篇(扩展2)

——初一数学几何证明题带图答案3篇

初一数学几何证明题带图答案1

  图片发不上来,看参考资料里的

  1 如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。

  2 已知AC*分角BAD,CE垂直AB于E, CF垂直AD于F,且BC=CD

  (1)求证:△BCE全等△DCF

  3.

如图所示,过三角形ABC的顶点A分别作两底角角B和角C的*分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.

  4.

已知,如图,PB、PC分别是△ABC的外角*分线,且相交于点P。

  求证:点P在∠A的*分线上。

  回答人的补充 2010-07-19 00:10 1.在三角形ABC中,角ABC为60度,AD、CE分别*分 角BAC 角ACB,试猜想,AC、AE、CD有怎么样的数量关系

  2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

  求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。 (这条线叫欧拉线) 求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~ (这个圆叫九点圆)

  3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加1

  4.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

  5.设所求直线为y=kx+b (k,b为常数.k不等于0). 则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1 (1) 过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2 (2). 直线(2)与 直线(1)的交点为A,直线(2)与 直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.

  6. 在三角形ABC中,角ABC=60,点P是三角ABC内的一点,使得角APB=角BPC=角CPA,且PA=8 PC =6则PB= 2 P是矩形ABCD内一点,PA=3 PB= 4 PC=5 则PD= 3 三角形ABC是等腰直角三角形,角C=90 O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1 两三角形的公共部分为多边形KLMNPQ, 1)证明:三角形AKL 三角形BMN 三角形CPQ 都是等腰直角三角形 2)求三角形ABC与三角形A1B1C1公共部分的面积。

  已知三角形ABC,a,b,c分别为三边. 求证:三角形三边的*方和大于等于16倍的根号3 (即:a2+b2+c2大于等于16倍的根号3)

  初一几何单元练习题

  一.选择题

  1.如果α和β是同旁内角,且α=55°,则β等于( )

  (A)55° (B)125° (C)55°或125° (D)无法确定

  2.如图19-2-(2)

  AB‖CD若∠2是∠1的2倍,则∠2等于( )

  (A) 60°(B)90°(C)120° (D)150

  3.如图19-2-(3)

  ∠1+∠2=180°,∠3=110°,则∠4度数( )

  (A)等于∠1 (B)110°

  (C)70° (D)不能确定

  4.如图19-2-(3)

  ∠1+∠2=180°,∠3=110°,则∠1的度数是( )

  (A)70° (B)110°

  (C)180°-∠2 (D)以上都不对

  5.如图19-2(5),

  已知∠1=∠2,若要使∠3=∠4,则需( )

  (A)∠1=∠2 (B)∠2=∠3

  (C)∠1=∠4 (D)AB‖CD

  6.如图19-2-(6),

  AB‖CD,∠1=∠B,∠2=∠D,则∠BED为( )

  (A)锐角 (B)直角

  (C)钝角 (D)无法确定

  7.若两个角的一边在同一条直线上,另一边相互*行,那么这两个角的关系是()

  (A)相等 (B)互补 (C)相等且互补 (D)相等或互补

  8.如图19-2-(8)AB‖CD,∠α=()

  (A)50° (B)80° (C)85°

  答案:1.D 2. C 3. C 4. C 5. D 6. B 7. D 8. B

初一数学几何证明题带图答案2

  1.两个角的'和与这两角的差互补,则这两个角( )

  A.一个是锐角,一个是钝角 B.都是钝角

  C.都是直角 D.必有一个直角

  2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是( )

  3.下列说法正确的是 ( )

  A.一条直线的垂线有且只有一条

  B.过射线端点与射线垂直的直线只有一条

  C.如果两个角互为补角,那么这两个角一定是邻补角

  D.过直线外和直线上的两个已知点,做已知直线的垂线

  4.在同一*面内,两条不重合直线的位置关系可能有( )

  A.*行或相交 B.垂直或*行

  C.垂直或相交 D.*行、垂直或相交

  5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相( )

  A.*行 B.垂直

  C.在同一条直线上 D.或*行、或垂直、或在同一条直线上

  答案:1.D 2.C 3.B 4.A 5.A回答人的补充 2010-07-19 00:21 1.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500 cm如图,梯形ABCD中,AD*行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是*信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是*信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD*行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12 回答人的补充 2010-07-03 11:25 如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法 提示一种思路:连接并延长FG交AD的延长线于K)

  1.连接并延长FG交AD的延长线于K∠KGD=∠FGC ∠GDK=∠GCF BG=CG △CGF≌△DGK GF=GKAB=4 BF=3 AF=5 AB=4+1=5 AB=AF AG=AG △AGF≌△AGK ∠1=∠2

  2.延长AC交BC延长线与E∠ADG=∠ECG ∠AGD=∠EGC DG=GC △ADG≌△EGF ∠1=∠E AD=CEAF=5 EF=1+4=5 ∠2=∠E 所以∠1=∠2如图,四边形ABCD是*行四边形,BE*行DF,分别交AC于E、F连接ED、BF 求证∠1=∠2

  答案:证三角形BFE 全等 三角形DEF。 因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。 所以三角形BFE 全等 三角形DEF。 所以∠1等于∠2(全等三角形对应角相等)

  就给这么多吧~~N累~!!回答人的补充 2010-07-19 00:34 1已知ΔABC,AD是BC边上的中线。E在AB边上,ED*分∠ADB。F在AC边上,FD*分∠ADC。求证:BE+CF>EF。

  2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

  3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

  4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

  5已知ΔABC,AB>AC,AD是角*分线,P是AD**意一点。求证:AB-AC>PB-PC。

  6已知ΔABC,AB>AC,AE是外角*分线,P是AE**意一点。求证:PB+PC>AB+AC。

  7已知ΔABC,AB>AC,AD是角*分线。求证:BD>DC。

  8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

  9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

  10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

  等形 2

  1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

  2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

  3已知四边形ABCD,AB‖CD,E在BC上,AE*分∠BAD,DE*分∠ADC,若AB=2,CD=3,求AD。

  4已知ΔABC是直角三角形,AC=BC,BE是角*分线,AF⊥BE延长线于F。求证:BE=2AF。

  5已知ΔABC,∠ACB=90°,AD是角*分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

  6已知ΔABC,∠ACB=90°,AD是角*分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

  7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

  8已知ΔABC,AC=BC,CD是角*分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

  9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

  10已知ΔABC,∠B=60°。AD,CE是角*分线,求证:AE+CD=AC

  全等形 4

  1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

  2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

  3已知∠AOB,P为角*分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,求证:AO+BO=2CO。

  4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

  5已知ΔABC,AD是角*分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

  6已知ΔABC,∠B=90°,AD是角*分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

  7已知ΔABC,∠A与∠C的外角*分线交于P,连接PB,求证:PB*分∠B。

  8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

  9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE*分∠BAD,求证:AD+BC=AB。

  10已知ΔABC,AD是角*分线,BE⊥AD于E,过E作AC的*行线,交AB于F,求证:∠FBE=∠FEB。


初一数学几何证明题的常见解题方法3篇(扩展3)

——初中数学几何证明题3篇

初中数学几何证明题1

  (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

  (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

  (3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或*移腰,或*移对角线,或补形等等。正逆结合,战无不胜。

  几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

  一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

  二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

  三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要*时的积累,*时在课堂上学的基本知识点掌握牢固,*时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

  四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.*行线里同位角相等、内错角相等3.余角、补角定理4.角*分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

  五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

初中数学几何证明题2

  摘 要:几何证明是培养学生思维的一门学科,在刚开始学习时很多学生会觉得很难,不知道如何入手思考问题。本文通过不同的角度,对学生开始学习几何之初遇到的一点做法和想法展开论述,以提高学生对几何的认识,利用推理思想提高对问题的分析和解决能力。

  关键词:几何证明;几何认识;推理思想;分析和解决能力

  初一了,学生开始从实验几何向论证几何过渡。在之前,虽然学过一部分,但没有格式上的特殊要求,只要能看懂图形,根据图形回答问题,也就是说初一是学生学习几何的.关键期。要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。那么,怎样才能使学生过好这一关呢?

  一、强心理攻势――闯畏难情绪关

  初一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。2008学年当我**伊始,我就注意到那个坐在教室中间的小周:虽然她*时上课能安静听讲,但是集中***时间很短,记忆能力也特别差,当老师**她时,总是羞涩地低下头,默不作声。她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。

  通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。”我让其明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。通过谈心她表示愿意克服困难,和大家一起学习几何证明。当她有进步后,及时地给予表扬。“你做得真好,继续努力!!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。

  二、小梯度递进――闯层层技能关

  学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

  1、牢记几何语言

  几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。

  首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。

  其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于*角的叫钝角”,“大于直角或小于*角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。

  2.培养书写证明过程中的逻辑思维能力

  有的学生写出的证明过程,条理清楚,逻辑性强,但有的学生写出的证明过程逻辑混乱,没有条理性,表达不清楚,这种情况,就是在*时的教学中,没有注意培养学生的逻辑思维能力。


初一数学几何证明题的常见解题方法3篇(扩展4)

——中考数学常见解题技巧方法总结5篇

中考数学常见解题技巧方法总结1

  1、线段、角的计算与证明

  中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

  2、一元二次方程与函数

  在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

初一数学几何证明题方法

  3、多种函数交叉综合问题

  初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。

  4、列方程(组)解应用题

  在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从**来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

  5、动态几何与函数问题

  整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。

  6、几何图形的归纳、猜想问题

  中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。

中考数学常见解题技巧方法总结2

  1、配方法

  所谓的配方法公式是就是把一个解析式利用恒等变形的方法,将一些术语匹配成一个或几个多项式正整数幂的形式。通过公式求解数学问题的方法称为匹配方法。其中,常用的是匹配成完全扁*的方式。匹配方法是数学中身份转换的重要方法。它广泛应用于因子分解,简化,方程解,方程和不等式明,函数极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分的乘积。因子分解是身份变形的基础,在解决代数,几何和三角问题中起着重要作用。因子分解的方法很多,除了中学教科书上关于公因子法的提取,公式法,分组分解法,交叉乘法法等,还有诸如使用术语加法,根分解等,未确定系数等。

  3、换元法

  换元法是数学中非常重要且广泛使用的方法。我们通常将未知或变量称为元素。所谓的替换方法是用新变量替换原始公式的一部分,或者在相对复杂的数学公式中修改原始公式,以简化它并使问题易于解决。

  4、判别方法和韦达定理

  一元二次方程ax2+bx+c=0(a,b,c属于R,a≠0)根辨别,delta=b2-4ac,不仅用于确定根的性质,而且作为一种求解方法问题,代数变形,解方程(群),解不等式,研究函数甚至几何,三角运算具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果首先确定结果的欲望有一定的形式,其中包含一些未确定的系数,然后根据未确定系数方程组的设定条件,解决这些未确定的系数值或找到这些系数之间的关系未确定系数,从而解决数学问题,这种问题解决方法称为未确定系数的方法。它是中学数学中常用的方法之一。

  6、反法

  反法是间接明。这是一种方法,通过这种方法首先提出与的结论相反的设,然后,从这个设,通过正确的推理,导致矛盾,从而否定相反的设,从而肯定了正确性。原始。矛盾明可以分为矛盾的简化荒谬明(结论的反面只有一种)和矛盾的穷举明(结论的反面不止一种)。通过矛盾明的步骤一般分为:

  (1)反设;

  (2)减少;

  (3)结论。

  7、面积法

  *面几何中的面积公式和与面积公式导出的面积计算相关的属性定理不仅可以用于计算面积,而且还可以明*面几何问题有时会得到两倍的结果。使用面积关系来明或计算*面几何问题称为面积法,这是几何中的常用方法。

  8、客观问题解决方法

  多项选择题是提供条件和结论的问题,需要基于某种关系的正确。选择题设计精巧,形式灵活,可以全面检验学生的基本知识和技能,从而提高考试的能力和知识的覆盖面。

中考数学常见解题技巧方法总结3

  初中数学解题思路的获得,一般要经历三个步骤:

  1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;

  2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;

  3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的**结构。

  数学的表达,有3种方式:

  1.文字语言,即用汉字表达的内容;

  2.图形语言,如几何的图形,函数的图象;

  3.符号语言,即用数学符号表达的内容,比如AB∥CD。

  在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。

  先来看转化思想:

  我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

  如方程的学习中,一元一次方程是学习方程的基础,那么在学**元一次方程组时,可以通过加减消元和代入消元这样的**把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是**,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是**,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

  所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。

中考数学常见解题技巧方法总结4

  1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。

  2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。“问题是数学的心脏”。

  3.问题反映了现有水*与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:

  (1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。

  (2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。

  (3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。

  4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。

  5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:

  (1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。

  (2)问题解决是一个探究过程。把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。

  (3)问题解决是一个学习目的。“学习数学的主要目的在于问题解决”。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就**于特殊的问题,**于一般过程或方法,也**于数学的具体内容。

  (4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。

  6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究“怎样解”,较少问“为什么这样解”。在这些误区里,“解题而不立法、作答而不立论”。

  7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。解题研究的一代宗师波利亚说过:“货源充足和**良好的知识仓库是一个解题者的重要资本”。

  8.熟练掌握数学基础知识的体系。对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。还应掌握中学数学竞赛涉及的基础理论。深刻理解数学概念、准确掌握数学定理、公式和法则。熟悉基本规则和常用的方法,不断积累数学技巧。

  9.数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。至此,也产生新的结果,也被原思维吸收。这就是一个思维活动的全过程。

中考数学常见解题技巧方法总结5

  1、数形结合思想

  就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙**地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想

  事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想

  在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法

  当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法

  就是把一个代数式设法构造成*方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法

  在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法

  在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法

  在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法

  由一般到特殊的推理方法。


初一数学几何证明题的常见解题方法3篇(扩展5)

——初一数学的学习方法5篇

初一数学的学习方法1

  刚升入初中的孩子,学习的第一部分内容就是有理数,我们就会发现同学们出现了一些计算问题。

  归纳起来问题主要是这么几个方面:

  1.计算速度慢。

  很多孩子在进行有理数计算的时候,计算速度非常慢,很简单的几道题目需要很长时间,究其原因主要是基本运算法则不熟悉、计算技巧没有掌握。

  2.计算准确率低。

  这是一个困扰着家长和孩子的大问题,算了半天结果算错了,自己检查可能还查不出错误。这里面包含着孩子从小学带上来的计算和做题习惯的问题,当然也有对不同计算法则的混淆、基本计算概念的不清晰(比如去括号的顺序、运算级别的顺序等)。还有就是使用方法笨拙,没有看出简单的计算方法,导致计算量徒然增大,降低准确率。

  3.计算方法笨。

  其实这一点在前两点里都有体现,计算方法笨导致计算的速度慢、准确率低。主要体现在不会使用简便方法,不能熟练运用凑整、裂项、错位等运算技巧。

  总结起来主要原因是计算习惯不好、计算法则掌握不牢、计算方法和技巧不了解或者不能熟练运用,解决的办法主要是下面几个:

  培养良好的解题习惯。

  在*时做题的过程中让孩子养成使用草稿纸的习惯,有必要时定期检查草稿纸的书写情况;做完题之后重视检查,可每道题多算几遍。

  2.巩固基本计算法则。

  计算要想算好必须进行练习,每天家长可以从练习册、或者网上选几道计算题,不一定有多么高深的技巧,只要能算就可以了,在限定的时间内算完。

  3.练习掌握计算规律和技巧。

  掌握计算习惯和基本知识对于初中生的计算来说还是远远不够的,*时还应该加强计算技巧的训练,特别是一些典型的计算技巧。在期中、期末考试的难题、附加题中甚至中考的技巧性运算里都会出现。

  其实,初一是初中三年打基础的一年,掌握好各种运算本领和计算能力对孩子今后学习代数式运算、函数计算至关重要,在中考越来越重视"坚韧的计算毅力"的背景下,由于计算能力对初一的重要性。

  因此一定要引起家长们的重视,以便在中考中不出现偏科的现象。

初一数学的学习方法2

  通过一些听课研究,我发觉,在我们的课堂中仍然存在着"教"轻"学"的教学模式。

  数学教学**偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津。

  一、数学学习方法的重要性前苏联教学论专家巴班斯基曾指出的:"教学方法是由学习方式和教学方式运用的协调一致的效果决定的。

  "从国际教育**和发展趋势来看,教会学生学习、教会学生积极主动发展是世界各国的共同目标。

  在人类进入信息时代的新世纪,人们将面临知识不断更新,学习成为贯穿人的一生的事情,一方面不仅要关注学生素质发展的全面完善以及个性的健康**发展,另一方面还要关注到学生的学习和发展,更为重要的是要让学生愿意学习,学会学习,掌握学习的方法、技能,能够积极主动的学习。

  二、数学学习的常用方法我国要求尊重学生的学习主体地位,要真正把学生作为学习的主人翁看待;关注学生的学习过程,倡导学生主动参与,使学生在自主、合作、探究的方式中积极主动地进行学习活动;培养学生的创新精神与实践能力。

  特别是对于初中一年级,要为学生学习数学知识打下良好基础,数学学习方法的学习显得更具有时代性和前瞻性。

  数学学习方法指导是一个由非智力因素、学习方法、学**惯、学习能力多元组成的**整体,因此,应以系统整体的观点进行学法指导,目的在于使学生加强学习修养,激发学习动机;指导学生掌握科学的学习方法;指导学生学习数学的良好习惯,进而提高学习能力及效果。

  (1)正确认识数学学习方法的重要性。

  启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中。

  可以通过讲述数学名人的故事,激励学生,我结合《数轴》一课的内容,在班上讲述笛卡尔在病床上发现数轴,最终开创了用数轴表示有理数的故事。

  让孩子懂得了获得数学知识,学习数学的方法才是关键。

  在班级中,我多次召开数学学法研讨会,让学习成绩优秀的同学介绍经验,开辟黑板报专栏进行学习方法的讨论。

  (2)形成良好的非智力因素非智力因素是学习方法指导得以进行的基础。

  初一学生好奇心强烈,但学习的持久性不长,如果在教学中具有积极的非智力因素基础,可以使学生学习的积极性长盛不衰。

  <1>激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性。

  比如在学习《概率初步认识》一课中,教学引入时,我根据学生喜欢玩扑克牌的爱好,和他们来讲扑克游戏,引发学生的兴趣,使学生产生强烈的求知欲。

  有的课教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生。

  <2>锻炼学习数学的意志。

  心理学家认为:意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志力的"磨刀石".我认为应该以练习为主,在初一的数学练习中,要经常给学生安排适当难度的练习题,让他们付出一定的努力,在**思考中解决问题,但注意难度必须适当,因为若太难会挫伤学生的信心,太易又不能锻炼学生的意志。

  <3>养成良好的数学学**惯。

  有的孩子习惯"闷"题目,盲目的以为多做题就是学好数学的方法,这个不良的学**惯,在*时的教学中老师一定要注意纠正。

  (3)指导学生掌握科学的数学学习方法。

  ①合理渗透。

  在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中。

  例如我在进行《完全*方公式》教学时,很多孩子老是漏掉系数2乘以首尾两项,于是我就给他们编了首顺口溜,"头*方,尾*方,头尾组合2拉走",这样选取生动、有趣的记忆法来指导学生学习,有利于突破知识的难点。

  ②随机点拨。

  无论是在授课阶段还是在学生练习阶段,教师要有强烈的学法指导意识,抓住最佳契机,画龙点睛地点拨学习方法。

  ③及时总结。

  在传授知识、训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结。

  我在完成一个单元的学习之后都让孩子们养成自己总结的习惯,使单元重点系统化,并找出规律性的东西。

  ④迁移训练。

初一几何证明题100题及答案简单

  总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。

  (4)开设数学学法指导课,并列入数学教学计划。

  在我所任教的初一年级里,我每两周一课时给学生上数学学法的指导课。

  结合正反例子讲,结合数学学科的具体知识和学法特点讲,结合学生的思想实际讲,边讲边示范边训练。

  数学学习能力包括观察力、记忆力、思维力、想象力、***以及自学、交往、表达等能力。

  学习活动过程是一个需要深入探究的过程。

  在这一过程中,教师要挖掘教材因素,注意疏通信息渠道,善于引导学生积极思维,使学生不断发现问题或提出假设,检验解决问题,从而形成勇于钻研、不断探究的习惯,架设起学生由知识向能力、能力与知识相融合的桥梁。

  总之,初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。

  为日后进一步进行数学学习打好良好的基础。

初一数学的学习方法3

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

初一数学的学习方法4

  教学质量的高低,很大程度上取决于学生的学习态度和学习方法。特别是学生进入中学后,科目增加、内容拓宽、知识深化,尤其是数学从具体发展到抽象,从文字发展到符号,由静态发展到动态……而学生没有自觉摄取知识的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,慢慢地失去学习信心和兴趣,陷入厌学的困境。这也往往是初二阶段学生明显出现“两极分化”的原因。

  初一新生从小学到初**境变化了,学生和老师都有一些新面孔,就是老师的授课方法也会有所不同,需要有一个适应期。因此重视对初一学生数学学习方法的指导是非常必要的。良好的学习方法需要教师在授课中潜移默化地加以培养,对学生学习的几个环节(预习、听课、复习巩固与作业、总结),从宏观上对学习方法分层次、分步骤指导。

  一、从小学到初中是人生的转折点,学**也是如此,作为教师一定要为学生把好这个关

  初一学生往往不会预习,他不知道预习起什么作用,草草看一遍,流于形式。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,了解本节知识的梗概。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,对难以理解的概念作出记号,以便带着疑问去听课。从而使学生化难为易、变被动学习为主动学习,逐渐培养学生的自学能力。

  二、听课方法的指导要处理好“听”“思”“记”的关系

  “听”是直接用感官接受知识,应指导学生在听的过程中注意:首先要静下心来听每节课的学习要求;掌握知识的引人及知识形成过程;掌握重点、难点,剖析预习中的疑点;听例题解法的思路和数学思想方法的体现;听好课后小结。教师讲课一定掌握最佳讲授时间,使学生听之有效。

  “思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:多思、勤思;深思、善于大胆提出问题;树立批判意识,学会反思。可以说“听”是“思”的基础,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。

  “记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:作笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。

  掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。

  三、深后复习巩固及完成作业方法的指导

  初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。

  为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后**完成作业,解题后再反思。在作业书写方面也应注意”写法“指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生如何将文字语言转化为符号语言;如何将推理思考过程用文字书写表达;正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。

  四、总结方法的指导

  在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复*结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复*结的途径。

  要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。

初一数学的学习方法5

  刚升入初中的孩子,学习的第一部分内容就是有理数,我们就会发现同学们出现了一些计算问题。

  归纳起来问题主要是这么几个方面:

  1.计算速度慢。

  很多孩子在进行有理数计算的时候,计算速度非常慢,很简单的几道题目需要很长时间,究其原因主要是基本运算法则不熟悉、计算技巧没有掌握。

  2.计算准确率低。

  这是一个困扰着家长和孩子的大问题,算了半天结果算错了,自己检查可能还查不出错误。这里面包含着孩子从小学带上来的计算和做题习惯的问题,当然也有对不同计算法则的'混淆、基本计算概念的不清晰(比如去括号的顺序、运算级别的顺序等)。还有就是使用方法笨拙,没有看出简单的计算方法,导致计算量徒然增大,降低准确率。

  3.计算方法笨。

  其实这一点在前两点里都有体现,计算方法笨导致计算的速度慢、准确率低。主要体现在不会使用简便方法,不能熟练运用凑整、裂项、错位等运算技巧。

  总结起来主要原因是计算习惯不好、计算法则掌握不牢、计算方法和技巧不了解或者不能熟练运用,解决的办法主要是下面几个:

  培养良好的解题习惯。

  在*时做题的过程中让孩子养成使用草稿纸的习惯,有必要时定期检查草稿纸的书写情况;做完题之后重视检查,可每道题多算几遍。

  2.巩固基本计算法则。

  计算要想算好必须进行练习,每天家长可以从练习册、或者网上选几道计算题,不一定有多么高深的技巧,只要能算就可以了,在限定的时间内算完。

  3.练习掌握计算规律和技巧。

  掌握计算习惯和基本知识对于初中生的计算来说还是远远不够的,*时还应该加强计算技巧的训练,特别是一些典型的计算技巧。在期中、期末考试的难题、附加题中甚至中考的技巧性运算里都会出现。

  其实,初一是初中三年打基础的一年,掌握好各种运算本领和计算能力对孩子今后学习代数式运算、函数计算至关重要,在中考越来越重视"坚韧的计算毅力"的背景下,由于计算能力对初一的重要性。

  因此一定要引起家长们的重视,以便在中考中不出现偏科的现象。


初一数学几何证明题的常见解题方法3篇(扩展6)

——初一数学解题技巧3篇

初一数学解题技巧1

  直接法(推演法):

  定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.

  排除法

  定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。途径有二种:

  1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.

  2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.

  排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.

  等价转化法

  定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。在解决有关排列组合的的应用问题尤为突出.

  定义法

  定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.

  总结:要注意定义的成立条件或约束条件,*时要掌握定义的推导和证明过程.

  直觉判断法

  定义:通过*时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.

  要点:需要*时多积累、多观察、多总结.


初一数学几何证明题的常见解题方法3篇(扩展7)

——初一数学学习方法及技巧3篇

初一数学学习方法及技巧1

  1、请概括的说一下学习的方法

  曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

  2、请谈谈超前学习的好处

  曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能**解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

  其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水*,实践证明,并非这样。

  再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

  最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中***的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中***的时间并不太多。

  3、请谈谈联想与总结

  曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

  4、那么我们怎样预习呢?

  曰:“先说说学习的目标:

  (1)知道知识产生的背景,弄清知识形成的过程。

  (2)或早或晚的知道知识的地位和作用:

  (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

  再说具体的做法:

  (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的最高境界是意会。一定要在理解概念上下一番苦功夫后再做题。

  (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全*方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角*分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

  (3)对于例题及习题的处理见上面的(2)及下面的第五条。

  5、请你再谈谈关于做题

  曰:做题是学好数学的必要条件。题不在多而在精。你们要注重对基本题解决方法的挖掘和解题规律的总结。如解不等:<0由分子分母异号可化为或去分母化为两个一次不不等式组。它包含了一般的解不等式的思考、解决方法。有时你们会遇到很难解的题。如果做不出来,可模仿别人,但模仿的不仅仅是形式,更重要的是人家的思考方法,为什么必然发生一样。就是说,每作一道题都要说出想法,是哪条规律指导着你?具体的做法可落实在“一题多解,一法多用,一题多变”上,这些最能锻炼你从多角度思考问题、与其他知识建立联系的能力。

初一数学学习方法及技巧2

  1、一般来讲,上课要以听讲和思考为主,并简明扼要地把教师讲的思路记下来,课本上叙述详细的地方可以不记或略记(这就需要做到很好的预习)。

  2、要记下自己的疑问或闪光的思想。

  如果老师讲概念或公式时(主要指基础知识),主要记知识的发生背景、实例、分析思路、关键的推理步骤、重要结论和注意事项等;

  如果是复习讲评课,重点要记解题策略(如审题方法、思路分析、最优解法等)以及典型错误与原因剖析,总结思维过程,揭示解题规律。

  3、记笔记时,不要把笔记本记满,要留有余地,以便课后反思、整理,这样既可以提高听课效率,又有利于课后有针对性的复习,从而收到事半功倍的效果。

  误区:笔记本成了习题集

  误区行为:翻开一些同学的数学笔记本,可以说是考试试题大全以及一些解题技巧、一题多解之类的集锦,很少涉及知识点之间的联系、思想方法的提炼及解题策略的整理,没有自己的钻研体验,笔记本成了习题集。

  产生后果:一味做题抄录,不认真领悟其中蕴含的重要数学思想和方法,只能是就题论题,丝毫没有将习题价值挖掘出来,徒劳无获!

  应对措施:

  1、注意写好解题评注,易错之处或重要的解题思想,要用简短精炼的词语作为评注,把闪光的智慧用笔头记下来,这对积累经验,提升数学素养大有裨益。这就好比安装在高速公路两旁的路标,它们会提醒你何时减速,何时急转弯,何时遇到岔路口等。

  2、隔一段时间后,再把它们拿出来推敲一番,往往会温故知新。

  误区:笔记本成了过期“期刊”

  误区行为:有些同学的笔记本好比过期期刊,时间一长就弃于一旁,没有发挥它应有的作用,实在可惜。

  产生后果:笔记是课本知识的浓缩、补充和深化,是思维过程的展现与提炼,如弃置一旁,不仅浪费原来所花时间,同时也降低复习的效率,耽误更多地时间!

  应对措施:要经常对笔记进行阶段性整理和补充,建立有个性的学习资料体系。

  1、可以分类建立“错题集”,整理每次练习和考试中出现的错误,并作剖析;

  2、还可以将笔记整理为“妙题巧解”、“方法点评”、“易错题”等类别。

  只要大家能克服上面所说的三个误区,并坚持按照我们说的措施做下去,就会不断扩大成果,就能克服“盲点”,走出“误区”,到了紧张的综合复习阶段,就会显得轻松、有序,还可以腾出更多的精力和时间,把所学知识系统化、信息化。

初一数学学习方法及技巧3

  1、做好预习。单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能**提高学习效率噢,兴趣是最好的老师嘛。

  2、认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的`疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

  3、认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。

  4、及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使*时课堂上没练到的题型,也能得心应手,即举一反三。

  6、学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗?


初一数学几何证明题的常见解题方法3篇(扩展8)

——考研数学证明题的解答技巧总结 (菁选2篇)

考研数学证明题的解答技巧总结1

  一、结合几何意义记住基本原理

  重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  二、借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  三、逆推法

  从结论出发寻求证明方法。如20xx年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

考研数学证明题的解答技巧总结2

  1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

  2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

  3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

  4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除