高中数学导数知识点总结3篇

高中数学导数知识点总结1

  ★高中数学导数知识点

  一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

  二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

  三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

  四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种****上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来**。微积分无论是用现代极限论还是150年前的理论都不是最好的**。

  高中数学导数要点

  1、求函数的单调性:

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

  2、求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

  变化情况:

  (4)检查f(x)的符号并由表格判断极值。

  3、求函数的最大值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

  求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

  4、解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域。

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

  5、导数在实际生活中的应用:

  实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

高中数学导数知识点总结2

  一、求导数的.方法

  (1)基本求导公式

  (2)导数的四则运算

  (3)复合函数的导数

  设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

  二、关于极限

  1、数列的极限:

  粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

  2、函数的极限:

  当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

  三、导数的概念

  1、在处的导数。

  2、在的导数。

  3。函数在点处的导数的几何意义:

  函数在点处的导数是曲线在处的切线的斜率,

  即k=,相应的切线方程是

  注:函数的导函数在时的函数值,就是在处的导数。

  例、若=2,则=()A—1B—2C1D

  四、导数的综合运用

  (一)曲线的切线

  函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

  (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=

  (2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

高中数学导数知识点总结3

  (一)导数第一定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f(x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第一定义

  (二)导数第二定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第二定义

  (三)导函数与导数

  如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1.利用导数研究多项式函数单调性的一般步骤

  (1)求f(x)

  (2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2.用导数求多项式函数单调区间的一般步骤

  (1)求f(x)

  (2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间

  学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。


高中数学导数知识点总结3篇扩展阅读


高中数学导数知识点总结3篇(扩展1)

——高中数学知识点总结10篇

高中数学知识点总结1

  考点一、映射的概念

  1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

  2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应.包括:一对一多对一

  考点二、函数的概念

  1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数.记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域.函数是特殊的映射,是非空数集A到非空数集B的映射.

  2.函数的三要素:定义域、值域、对应关系.这是判断两个函数是否为同一函数的依据.

  3.区间的概念:设a,bR,且a

  ①(a,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考点三、函数的表示方法

  1.函数的三种表示方法列表法图象法解析法

  2.分段函数:定义域的不同部分,有不同的对应法则的函数.注意两点:①分段函数是一个函数,不要误认为是几个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

  考点四、求定义域的几种情况

  ①若f(x)是整式,则函数的定义域是实数集R;

  ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;

  ③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

  ④若f(x)是对数函数,真数应大于零.

  ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零.

  ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

  ⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高中数学知识点总结2

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)数量:只有大小,没有方向的量.

  (3)有向线段的三要素:起点、方向、长度.

  (4)零向量:长度为0的向量.

  (5)单位向量:长度等于1个单位的向量.

  (6)*行向量(共线向量):方向相同或相反的非零向量.

  ※零向量与任一向量*行.

  (7)相等向量:长度相等且方向相同的向量.

  2.向量加法运算:

  ⑴三角形法则的特点:首尾相连.

  ⑵*行四边形法则的特点:共起点

高中数学知识点总结3

  一、*面的基本性质与推论

  1、*面的基本性质:

  公理1如果一条直线的两点在一个*面内,那么这条直线在这个*面内;

  公理2过不在一条直线上的三点,有且只有一个*面;

  公理3如果两个不重合的*面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、*面之间的位置关系:

  直线与直线—*行、相交、异面;

  直线与*面—*行、相交、直线属于该*面(线在面内,最易忽视);

  *面与*面—*行、相交。

  3、异面直线:

  *面外一点A与*面一点B的连线和*面内不经过点B的直线是异面直线(判定);

  所成的角范围(0,90)度(*移法,作*行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线*行或相交(反证);

  异面直线不同在任何一个*面内。

  求异面直线所成的角:*移法,把异面问题转化为相交直线的夹角

  二、空间中的*行关系

  1、直线与*面*行(核心)

  定义:直线和*面没有公共点

  判定:不在一个*面内的一条直线和*面内的一条直线*行,则该直线*行于此*面(由线线*行得出)

  性质:一条直线和一个*面*行,经过这条直线的*面和这个*面相交,则这条直线就和两*面的交线*行

  2、*面与*面*行

  定义:两个*面没有公共点

  判定:一个*面内有两条相交直线*行于另一个*面,则这两个*面*行

  性质:两个*面*行,则其中一个*面内的直线*行于另一个*面;如果两个*行*面同时与第三个*面相交,那么它们的交线*行。

  3、常利用三角形中位线、*行四边形对边、已知直线作一*面找其交线

  三、空间中的垂直关系

  1、直线与*面垂直

  定义:直线与*面内任意一条直线都垂直

  判定:如果一条直线与一个*面内的两条相交的直线都垂直,则该直线与此*面垂直

  性质:垂直于同一直线的两*面*行

  推论:如果在两条*行直线中,有一条垂直于一个*面,那么另一条也垂直于这个*面

  直线和*面所成的角:【0,90】度,*面内的一条斜线和它在*面内的射影说成的锐角,特别规定垂直90度,在*面内或者*行0度

  2、*面与*面垂直

  定义:两个*面所成的二面角(从一条直线出发的两个半*面所组成的图形)是直二面角(二面角的*面角:以二面角的棱**一点为端点,在两个半*面内分别作垂直于棱的两条射线所成的角)

  判定:一个*面过另一个*面的垂线,则这两个*面垂直

  性质:两个*面垂直,则一个*面内垂直于交线的直线与另一个*面垂直

高中数学知识点总结4

  一、集合、简易逻辑

  1、集合;

  2、子集;

  3、补集;

  4、交集;

  5、并集;

  6、逻辑连结词;

  7、四种命题;

  8、充要条件。

  二、函数

  1、映射;

  2、函数;

  3、函数的单调性;

  4、反函数;

  5、互为反函数的函数图象间的关系;

  6、指数概念的扩充;

  7、有理指数幂的运算;

  8、指数函数;

  9、对数;

  10、对数的运算性质;

  11、对数函数。

  12、函数的应用举例。

  三、数列(12课时,5个)

  1、数列;

  2、等差数列及其通项公式;

  3、等差数列前n项和公式;

  4、等比数列及其通顶公式;

  5、等比数列前n项和公式。

  四、三角函数

  1、角的概念的推广;

  2、弧度制;

  3、任意角的三角函数;

  4、单位圆中的三角函数线;

  5、同角三角函数的基本关系式;

  6、正弦、余弦的诱导公式;

  7、两角和与差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函数、余弦函数的图象和性质;

  10、周期函数;

  11、函数的奇偶性;

  12、函数的图象;

  13、正切函数的图象和性质;

  14、已知三角函数值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法举例。

  五、*面向量

  1、向量;

  2、向量的加法与减法;

  3、实数与向量的积;

  4、*面向量的坐标表示;

  5、线段的定比分点;

  6、*面向量的数量积;

  7、*面两点间的距离;

  8、*移。

  六、不等式

  1、不等式;

  2、不等式的'基本性质;

  3、不等式的证明;

  4、不等式的解法;

  5、含绝对值的不等式。

  七、直线和圆的方程

  1、直线的倾斜角和斜率;

  2、直线方程的点斜式和两点式;

  3、直线方程的一般式;

  4、两条直线*行与垂直的条件;

  5、两条直线的交角;

  6、点到直线的距离;

  7、用二元一次不等式表示*面区域;

  8、简单线性规划问题;

  9、曲线与方程的概念;

  10、由已知条件列出曲线方程;

  11、圆的标准方程和一般方程;

  12、圆的参数方程。

  八、圆锥曲线

  1、椭圆及其标准方程;

  2、椭圆的简单几何性质;

  3、椭圆的参数方程;

  4、双曲线及其标准方程;

  5、双曲线的简单几何性质;

  6、抛物线及其标准方程;

  7、抛物线的简单几何性质。

  九、直线、*面、简单何体

  1、*面及基本性质;

  2、*面图形直观图的画法;

  3、*面直线;

  4、直线和*面*行的判定与性质;

  5、直线和*面垂直的判定与性质;

  6、三垂线定理及其逆定理;

  7、两个*面的位置关系;

  8、空间向量及其加法、减法与数乘;

  9、空间向量的坐标表示;

  10、空间向量的数量积;

  11、直线的方向向量;

  12、异面直线所成的角;

  13、异面直线的公垂线;

  14、异面直线的距离;

  15、直线和*面垂直的性质;

  16、*面的法向量;

  17、点到*面的距离;

  18、直线和*面所成的角;

  19、向量在*面内的射影;

  20、*面与*面*行的性质;

  21、*行*面间的距离;

  22、二面角及其*面角;

  23、两个*面垂直的判定和性质;

  24、多面体;

  25、棱柱;

  26、棱锥;

  27、正多面体;

  28、球。

  十、排列、组合、二项式定理

  1、分类计数原理与分步计数原理;

  2、排列;

  3、排列数公式;

  4、组合;

  5、组合数公式;

  6、组合数的两个性质;

  7、二项式定理;

  8、二项展开式的性质。

  十一、概率

  1、随机事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一个发生的概率;

  4、相互**事件同时发生的概率;

  5、**重复试验。

  必修一函数重点知识整理

  1、函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(—x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2、复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3、函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像**意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1**意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

  4、函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5、方程k=f(x)有解k∈D(D为f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

  (2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符号由口诀“同正异负”记忆;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10、对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13、恒成立问题的处理方法:

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解。

  拓展阅读:高中数学复习方法

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此*时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高中数学知识点总结5

  一、直线与方程高考考试内容及考试要求:

  考试内容:

  1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

  2.两条直线*行与垂直的条件;两条直线的交角;点到直线的距离;

  考试要求:

  1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

  2.掌握两条直线*行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

  二、直线与方程

  课标要求:

  1.在*面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条*行线之间的距离等。

  要点精讲:

  1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴*行或重合时,规定α= 0°.

  倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

  2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

  (1)当直线l与x轴*行或重合时,α=0°,k = tan0°=0;

  (2)当直线l与x轴垂直时,α= 90°,k 不存在。

  由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

  3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

  (若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

  4.两条直线的*行与垂直的判定

  (1)若l1,l2均存在斜率且不重合:

  ①;②

  注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

  (2)

  若A1、A2、B1、B2都不为零。

  注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

  两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。

  5.直线方程的五种形式

  确定直线方程需要有两个互相**的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

  直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示*行或重合两坐标轴的直线;截距式不能表示*行或重合两坐标轴的直线及过原点的直线。

  6.直线的交点坐标与距离公式

  (1)两直线的交点坐标

  一般地,将两条直线的方程联立,得方程组

  若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线*行。

  (2)两点间距离

  两点P1(x1,y1),P2(x2,y2)间的距离公式

  特别地:轴,则、轴,则

  (3)点到直线的距离公式

  点到直线的距离为:

  (4)两*行线间的距离公式:

  若,则:

  注意点:x,y对应项系数应相等。

高中数学知识点总结6

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N。

  在自然数集内排除0的集合叫做正整数集,记作N+或NX。

  整数全体构成的集合,叫做整数集,记作Z。

  有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为**,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中数学知识点总结7

  1、命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  3、函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  4、反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  5、反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  6、函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

高中数学知识点总结8

  考点一:集合与简易逻辑

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。**的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与*面向量

  一般是2道小题,1道综合解答题。小题一道考查*面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查*面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查*面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目。

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面*行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  考点六:解析几何

  一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与*面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

  考点七:算法复数推理与证明

  高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问。

高中数学知识点总结9

  一、求动点的轨迹方程的基本步骤

  ⒈建立适当的坐标系,设出动点M的坐标;

  ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的'直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  -直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学知识点总结10

  一、直线与方程高考考试内容及考试要求:

  考试内容:

  1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

  2.两条直线*行与垂直的条件;两条直线的交角;点到直线的距离;

  考试要求:

  1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

  2.掌握两条直线*行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

  二、直线与方程

  课标要求:

  1.在*面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条*行线之间的距离等。

  要点精讲:

  1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴*行或重合时,规定α= 0°.

  倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

  2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

  (1)当直线l与x轴*行或重合时,α=0°,k = tan0°=0;

  (2)当直线l与x轴垂直时,α= 90°,k 不存在。

  由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

  3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

  (若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

  4.两条直线的*行与垂直的判定

  (1)若l1,l2均存在斜率且不重合:

  ①;②

  注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

  (2)

  若A1、A2、B1、B2都不为零。

  注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

  两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。

  5.直线方程的五种形式

  确定直线方程需要有两个互相**的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

  直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示*行或重合两坐标轴的直线;截距式不能表示*行或重合两坐标轴的直线及过原点的直线。

  6.直线的交点坐标与距离公式

  (1)两直线的交点坐标

  一般地,将两条直线的方程联立,得方程组

  若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线*行。

  (2)两点间距离

  两点P1(x1,y1),P2(x2,y2)间的距离公式

  特别地:轴,则、轴,则

  (3)点到直线的距离公式

  点到直线的距离为:

  (4)两*行线间的距离公式:

  若,则:

  注意点:x,y对应项系数应相等。


高中数学导数知识点总结3篇(扩展2)

——高中数学必修三知识点总结3篇

高中数学必修三知识点总结1

  总体和样本

  ①在统计学中,把研究对象的全体叫做总体。

  ②把每个研究对象叫做个体。

  ③把总体中个体的总数叫做总体容量。

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,……,x-x研究,我们称它为样本。其中个体的个数称为样本容量。

  简单随机抽样

  也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。

  机地抽取**单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全**,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  简单随机抽样常用的方法

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  ④使用统计软件直接抽取。

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  抽签法

  ①给**对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或**。

高中数学必修三知识点总结2

  一、早期导数概念——特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

  二、17世纪——广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

  三、19世纪导数——逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

  四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种****上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来**。微积分无论是用现代极限论还是150年前的理论都不是最好的**。

高中数学必修三知识点总结3

  (一)导数第一定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

  (二)导数第二定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义

  (三)导函数与导数

  如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1.利用导数研究多项式函数单调性的一般步骤

  (1)求f(x)

  (2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2.用导数求多项式函数单调区间的一般步骤

  (1)求f(x)

  (2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

  学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。


高中数学导数知识点总结3篇(扩展3)

——高中数学知识点总结菁选

高中数学知识点总结15篇

  总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,写总结有利于我们学习和工作能力的提高,不如我们来制定一份总结吧。总结怎么写才是正确的呢?下面是小编帮大家整理的高中数学知识点总结,希望对大家有所帮助。

高中数学知识点总结1

  一、圆及圆的相关量的定义

  1.*面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2.圆**意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆**意两点的线段叫做弦。经过圆心的弦叫

  做直径。

  3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

  二、有关圆的字母表示方法

  圆--⊙ 半径—r 弧--⌒ 直径—d

  扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

  1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

  2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3.垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定

  理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

  4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5.一条弧所对的圆周角等于它所对的圆心角的一半。

  6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7.不在同一直线上的3个点确定一个圆。

  8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的.交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。

  9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

  离):

  AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

  10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

  外离P>R+r;外切P=R+r;相交R-r

  三、有关圆的计算公式

  1.圆的周长C=2πr=πd

  2.圆的面积S=s=πr?

  3.扇形弧长l=nπr/180

  4.扇形面积S=nπr? /360=rl/2

  5.圆锥侧面积S=πrl

  四、圆的方程

  1.圆的标准方程

  在*面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

  (x-a)^2+(y-b)^2=r^2

  2.圆的一般方程

  把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

  相关知识:圆的离心率e=0.在圆**意一点的曲率半径都是r.

  五、圆与直线的位置关系判断

  *面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

  讨论如下2种情况:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

  利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

  (2)如果B=0即直线为Ax+C=0,即x=-C/A.它*行于y轴(或垂直于x轴)

  将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

  令y=b,求出此时的两个x值x1,x2,并且我们规定x1

  当x=-C/Ax2时,直线与圆相离

  当x1

  当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

  圆的定理:

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  推论1.①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧

  ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧

  推论2.圆的两条*行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  11.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12.①直线L和⊙O相交 d

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 d>r

  13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理 圆的切线垂直于经过切点的半径

  15.推论1 经过圆心且垂直于切线的直线必经过切点

  16.推论2 经过切点且垂直于切线的直线必经过圆心

  17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线*分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等 外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离 d>R+r ②两圆外切 d=R+r

  ③两圆相交 R-rr)

  ④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

  21.定理 相交两圆的连心线垂直*分两圆的公共弦

  22.定理 把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24.正n边形的每个内角都等于(n-2)×180°/n

  25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

  27.正三角形面积√3a/4 a表示边长

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29.弧长计算公式:L=n兀R/180

  30.扇形面积公式:S扇形=n兀R^2/360=LR/2

  31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

  32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

  33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

  35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

高中数学知识点总结2

  1.有关*行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决*行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线*行(垂直)、线面*行(垂直)、面面*行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2. 判定两个*面*行的方法:

  (1)根据定义--证明两*面没有公共点;

  (2)判定定理--证明一个*面内的两条相交直线都*行于另一个*面;

  (3)证明两*面同垂直于一条直线。

  3.两个*面*行的主要性质:

  (1)由定义知:两*行*面没有公共点。

  (2)由定义推得:两个*面*行,其中一个*面内的直线必*行于另一个*面。

  (3)两个*面*行的性质定理:如果两个*行*面同时和第三个*面相交,那么它们的交线*行。

  (4)一条直线垂直于两个*行*面中的一个*面,它也垂直于另一个*面。

  (5)夹在两个*行*面间的*行线段相等。

  (6)经过*面外一点只有一个*面和已知*面*行。

  以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为性质定理,但在解题过程中均可直接作为性质定理引用。

  数学必修单元知识点

  第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

  第二,*面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

  第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

  第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点

  第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

  第六,空间位置关系的定性与定量分析,主要是证明*行或垂直,求角和距离。

  第七,解析几何。是高考的难点,运算量大,一般含参数。

  高中数学知识点梳理

  函数与导数

  第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的.取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

  在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

  第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。

  对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

  第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。

  在用定义进行判断时,要注意自变量在定义域区间内的任意性。

  第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同特征而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。

  抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

  第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)0。那么函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为变号零点和不变号零点,而对于不变号零点,函数的零点定理是**为力的,在解决函数的零点时,考生需格外注意这类问题。

  第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

  因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

  第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。

  解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

  第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。

高中数学知识点总结3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)数量:只有大小,没有方向的量.

  (3)有向线段的三要素:起点、方向、长度.

  (4)零向量:长度为0的向量.

  (5)单位向量:长度等于1个单位的'向量.

  (6)*行向量(共线向量):方向相同或相反的非零向量.

  ※零向量与任一向量*行.

  (7)相等向量:长度相等且方向相同的向量.

  2.向量加法运算:

  ⑴三角形法则的特点:首尾相连.

  ⑵*行四边形法则的特点:共起点

高中数学知识点总结4

  第一讲相似三角形的判定及有关性质1.*行线等分线段定理

  *行线等分线段定理:如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

  推理1:经过三角形一边的中点与另一边*行的直线必*分第三边。推理2:经过梯形一腰的中点,且与底边*行的直线*分另一腰。

  2.*分线分线段成比例定理

  *分线分线段成比例定理:三条*行线截两条直线,所得的对应线段成比例。

  推论:*行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

  3.相似三角形的判定及性质

  相似三角形的判定:

  定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。

  由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

  (1)两角对应相等,两三角形相似;

  (2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。

  预备定理:*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。

  判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。

  判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。

  判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。

  引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

  (2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

  定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。相似三角形的性质:

  (1)相似三角形对应高的比、对应中线的比和对应*分线的比都等于相似比;(2)相似三角形周长的.比等于相似比;

  (3)相似三角形面积的比等于相似比的*方。

  相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的*方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

  第二讲直线与圆的位置关系1.圆周定理

  圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。圆心角定理:圆心角的度数等于它所对弧的度数。

  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  2.圆内接四边形的性质与判定定理

  定理1:圆的内接四边形的对角互补。

  定理2:圆内接四边形的外角等于它的内角的对角。

  圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

  3.圆的切线的性质及判定定理

  切线的性质定理:圆的切线垂直于经过切点的半径。推论1:经过圆心且垂直于切线的直线必经过切点。推论2:经过切点且垂直于切线的直线必经过圆心。

  切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

  4.弦切角的性质

  弦切角定理:弦切角等于它所夹的弧所对的圆周角。

  5.与圆有关的比例线段

  相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

  割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

  切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

  切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角。

  6.垂径定理

  垂直于弦的直径*分这条弦,并且*分弦所对的两条弧。

  7.三角形的五心

  (1)内心:三条角*分线的交点,也是三角形内切圆的圆心。性质:到三边距离相等。(2)外心:三条中垂线的交点,也是三角形外接圆的圆心。性质:到三个顶点距离相等。(3)重心:三条中线的交点。性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。

  (4)垂心:三条高所在直线的交点。

  (5)旁心:三角形任意两角的外角*分线和第三个角的内角*分线的交点。性质:到三边的

  距离相等

  第三讲圆锥曲线性质的探究1.*面与圆柱面的截线:

  当*面与圆柱的两底面*行时,截面是个圆;当*面与圆柱的两底面不*行时,截面是个椭

  圆;定理1:圆柱形物体的斜截口是椭圆。

  定理2:在空间中,取直线l为轴,直线l’与l相交于O点,夹角为α,l’围绕l旋转得

  到以O为顶点,l’为母线的圆锥面,任取*面π,若它与轴l的夹角为β(当π与l*行时,记β=0),则截面不过顶点时:

  (1)β>α,*面π与圆锥的交线为椭圆;(2)β=α,*面π与圆锥的交线为抛物线;(3)

  β<α,*面π与圆锥的交线为双曲线;截面过顶点时:(1)截面和圆锥面只相交于顶点,交线为一个点。

  (2)截面和圆锥面相交于两条母线,交线为两条相交曲线。(3)截面和圆锥面相切,交线为两

高中数学知识点总结5

  什么是不等式?

  一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

  通常不等式中的数是实数,字母也**实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

  数学知识点1、不等式性质比较大小方法:

  (1)作差比较法(2)作商比较法

  不等式的基本性质

  ①对称性:a > b,b > a

  ②传递性:a > b,b > ca > c

  ③可加性:a > b a + c > b + c

  ④可积性:a > b,c > 0,ac > bc

  ⑤加法法则:a > b,c > d,a + c > b + d

  ⑥乘法法则:a > b > 0,c > d > 0,ac > bd

  ⑦乘方法则:a > b > 0,an > bn(n∈N)

  ⑧开方法则:a > b > 0

  数学知识点2、算术*均数与几何*均数定理:

  (1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号)

  (2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:

  如果为实数,则重要结论

  (1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;

  (2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

  数学知识点3、证明不等式的常用方法:

  比较法:比较法是最基本、最重要的方法。

  当不等式的两边的.差能分解因式或能配成*方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作*方差。

  综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。

  分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。

高中数学知识点总结6

  导数及其应用

  一.导数概念的引入

  1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

  x0limf(x0x)f(x0),

  x我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:

  s)存在函数关系

  h(t)4.9t26.5t10

  运动员在t=2s时的瞬时速度是多少?解:根据定义

  vh(2)limh(2x)h(2)13.1

  x0x即该运动员在t=2s是13.1m/s,符号说明方向向下

  2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与

  曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0),当点Pn趋近于P时,

  xnx0函数yf(x)在xx0处的导数就是切线PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即f(x)lim

  二.导数的计算

  1.函数yf(x)c的导数2.函数yf(x)x的导数3.函数yf(x)x的导数

  2x0f(xx)f(x)

  x

  4.函数yf(x)1的导数x基本初等函数的导数公式:

  1若f(x)c(c为常数),则f(x)0;

  2若f(x)x,则f(x)x1;

  3若f(x)sinx,则f(x)cosx

  4若f(x)cosx,则f(x)sinx;

  5若f(x)ax,则f(x)axlna6若f(x)e,则f(x)e

  xx1xlna18若f(x)lnx,则f(x)

  xx7若f(x)loga,则f(x)导数的运算法则

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2复合函数求导

  yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)

  三.导数在研究函数中的应用

  1.函数的单调性与导数:

  一般的,函数的单调性与其导数的**有如下关系:

  在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

  极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:

  (1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;

  (2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;

  4.函数的`最大(小)值与导数

  函数极大值与最大值之间的关系.

  求函数yf(x)在[a,b]上的最大值与最小值的步骤

  (1)求函数yf(x)在(a,b)内的极值;

  (2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个最大值,最小的是最小值.

  四.生活中的优化问题

  利用导数的知识,求函数的最大(小)值,从而解决实际问题

  第二章推理与证明

  考点一合情推理与类比推理

  根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

  根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

  类比推理的一般步骤:

  (1)找出两类事物的相似性或一致性;

  (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

  (3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的

  (4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.

  考点二演绎推理(俗称三段论)

  由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.

  考点三数学归纳法

  1.它是一个递推的数学论证方法.

  2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,

  完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。

  考点三证明

  1.反证法:

  2.分析法:

  3.综合法:

  第一章数系的扩充和复数的概念考点一:复数的概念

  (1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.

  (2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,叫做纯虚数.

  (3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.

  (4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.

  (5)复*面:建立直角坐标系来表示复数的*面叫做复*面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。

  (6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

高中数学知识点总结7

  高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

  必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)

  必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、*行(2)、求解:主要是夹角问题,包括线面角和面面角

  这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

  2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

  3、圆方程:

  必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

  必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

  2、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

  文科:选修1—1、1—2

  选修1--1:重点:高考占30分

  1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

  选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)

  理科:选修2—1、2—2、2—3

  选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)

  选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

  选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

  高考的知识板块

  集合与简单逻辑:5分或不考

  函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)

  *面向量与解三角形

  立体几何:22分左右

  不等式:(线性规则)5分必考

  数列:17分 (一道大题+一道选择或填空)易和函数结合命题

  *面解析几何:(30分左右)

  计算原理:10分左右

  概率统计:12分----17分

  复数:5分

  推理证明

  一般高考大题分布

  1、17题:三角函数

  2、18、19、20 三题:立体几何 、概率 、数列

  3、21、22 题:函数、圆锥曲线

  成绩不理想一般是以下几种情况:

  做题不细心,(会做,做不对)

  基础知识没有掌握

  解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)

  心理素质不好

  总之学**数学一定要掌握科学的学**方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结

  高一年级

  必修一

  第一章 集合与函数概念

  第二章 基本初等函数(Ⅰ)

  第三章 函数的应用

  必修二

  第一章 空间几何体

  第二章 点、直线、*面之间的位置关系

  第三章 直线与方程

  必修三

  第一章 算法初步

  第二章 统计

  第三章 概率

  必修四

  第一章 三角函数

  第二章 *面向量

  第三章 三角恒等变换

  (二)教学要求

  在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,*面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。

  首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。它们是学**、掌握和使用数学语言的基础,是高中数学学**的出发点。在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。因此集合的基本概念、函数等有关内容是教师重点讲解的内容。

  其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的'内在联系,对学生进行辩证唯物**观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。

  第三,通过对三角函数的学**,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、*行移动、伸长和缩短等常用的基本方法的学**,使学生在学**数学和应用数学方面达到一个新的层次。

  第四,学***面向量,不但应注意*面向量基本知识的讲解,更要充分挖掘*面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。

  第五、在学**空间几何体、点、直线、*面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。

  第六、要在*面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿*面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

  第七、在学**算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。

  高二年级

  必修五

  第一章 解三角形

  第二章 数列

  第三章 不等式

  选修1-1

  第一章 常用逻辑用语

  第二章 圆锥曲线与方程

  第三章 导数及其应用

  选修1-2

  第一章 统计案例

  第二章 推理与证明

  第三章 数系的扩充与复数的引入

  第四章 框图

  选修2-1

  第一章 常用逻辑用语

  第二章 圆锥曲线与方程

  第三章 空间向量与立体几何

  选修2-2

  第一章 导数及其应用

  第二章 推理与证明

  第三章 数系的扩充与复数的引入

  选修2-3

  第一章 计数原理

  第二章 随机变量及其分布

  第三章 统计案例

  (二)教学要求

  高二上

  必修5

  学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。

  数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

  不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示*面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

  选修1—1(文科)

  在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

  在必修课程学***面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

  在本模块中,学生将通过大量实例,经历由*均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

  选修2-1(理科)

  在本模块中,学生将学**常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

  在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。

  在必修阶段学***面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

  在本模块中,学生将在学***面向量的基础上,把*面向量及其运算推广到空间,运用空间向量解决有关直线、*面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。

高中数学知识点总结8

  一、求导数的方法

  (1)基本求导公式

  (2)导数的四则运算

  (3)复合函数的导数

  设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

  二、关于极限

  1、数列的极限:

  粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

  2、函数的极限:

  当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

  三、导数的概念

  1、在处的导数。

  2、在的导数。

  3。函数在点处的.导数的几何意义:

  函数在点处的导数是曲线在处的切线的斜率,

  即k=,相应的切线方程是

  注:函数的导函数在时的函数值,就是在处的导数。

  例、若=2,则=()A—1B—2C1D

  四、导数的综合运用

  (一)曲线的切线

  函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

  (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=

  (2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

高中数学知识点总结9

  1.多动脑思考

  2.强化自己学习训练

  要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的.基础上做一定量的定式训练是必要的。尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

  3.养成良好的学**惯

  学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,看清数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在*时下功夫努力改正。其实这是一种不良的学**惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。

高中数学知识点总结10

  1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等?4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7*行公理经过直线外一点,有且只有一条直线与这条直线*行8如果两条直线都和第三条直线*行,这两条直线也互相*行9同位角相等,两直线*行10内错角相等,两直线*行11同旁内角互补,两直线*行12两直线*行,同位角相等13两直线*行,内错角相等14两直线*行,同旁内角互补

  15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的*分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的*分线上29角的*分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的*分线*分底边并且垂直于底边

  32等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直*分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上41线段的垂直*分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的'垂直*分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的*方和、等于斜边c的*方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52*行四边形性质定理1*行四边形的对角相等53*行四边形性质定理2*行四边形的对边相等54推论夹在两条*行线间的*行线段相等55*行四边形性质定理3*行四边形的对角线互相*分

  56*行四边形判定定理1两组对角分别相等的四边形是*行四边形57*行四边形判定定理2两组对边分别相等的四边形是*行四边形58*行四边形判定定理3对角线互相*分的四边形是*行四边形59*行四边形判定定理4一组对边*行相等的四边形是*行四边形

  60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的*行四边形是矩形64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形

  68菱形判定定理2对角线互相垂直的*行四边形是菱形

  69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

  78*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底*行的直线,必*分另一腰

  80推论2经过三角形一边的中点与另一边*行的直线,必*分第三边81三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例87推论*行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边

  89*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

  97性质定理2相似三角形周长的比等于相似比

  98性质定理3相似三角形面积的比等于相似比的*方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线107到已知角的两边距离相等的点的轨迹,是这个角的*分线

  108到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

  109定理不在同一直线上的三点确定一个圆。

  110垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  111推论1①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧112推论2圆的两条*行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

  122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

  127圆的外切四边形的两组对边的和相等

  128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)

  ④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直*分两圆的公*弦137定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

  140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长扑愎剑=n兀R/180

  145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式

  乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b^2-4ac=0注:方程有两个相等的实根b^2-4ac>0注:方程有两个不等的实根b^2-4ac抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h

  正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h

高中数学知识点总结11

  1、命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  2、对映射的`概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  3、函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  4、反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  5、反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  6、函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

高中数学知识点总结12

  有界性

  设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上**.

  单调性

  设函数f(x)的定义域为D,区间I包含于D.如果对于区间**意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的.单调递增和单调递减的函数统称为单调函数.

  奇偶性

  设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数.

  几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变.

  奇函数的例子有x、sin(x)、sinh(x)和erf(x).

  设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数.

  几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.

  偶函数的例子有|x|、x2、cos(x)和cosh(x).

  偶函数不可能是个双射映射.

  连续性

  在数学中,连续是函数的一种属性.直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数.如果输入值的.某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性).

高中数学知识点总结13

  若A1、A2、B1、B2都不为零。

  注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

  两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的`方程组的解的个数。

  5.直线方程的五种形式

  确定直线方程需要有两个互相**的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

  直线的点斜式与斜截式不能表示斜率不存在(垂直于x轴)的直线;两点式不能表示*行或重合两坐标轴的直线;截距式不能表示*行或重合两坐标轴的直线及过原点的直线。

  6.直线的交点坐标与距离公式

  (1)两直线的交点坐标

  一般地,将两条直线的方程联立,得方程组

  若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线*行。

  (2)两点间距离

  两点P1(x1,y1),P2(x2,y2)间的距离公式

  特别地:轴,则、轴,则

  (3)点到直线的距离公式

  点到直线的距离为:

  (4)两*行线间的距离公式:

  若,则:

  注意点:x,y对应项系数应相等。

高中数学知识点总结14

  一、高中数列基本公式:

  1、一般数列的通项an与前n项和Sn的关系:an=

  2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

  3、等差数列的前n项和公式:Sn=

  Sn=

  Sn=

  当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

  4、等比数列的'通项公式: an= a1qn-1an= akqn-k

  (其中a1为首项、ak为已知的第k项,an≠0)

  5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q≠1时,Sn=

  Sn=

  二、高中数学中有关等差、等比数列的结论

  1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

  2、等差数列{an}中,若m+n=p+q,则

  3、等比数列{an}中,若m+n=p+q,则

  4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

  5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

  6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

  7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

  8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

  9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  10、三个数成等比数列的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

高中数学知识点总结15

  等比数列公式性质知识点

  1.等比数列的有关概念

  (1)定义:

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).

  (2)等比中项:

  如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.

  2.等比数列的有关公式

  (1)通项公式:an=a1qn-1.

  3.等比数列{an}的常用性质

  (1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.

  特别地,a1an=a2an-1=a3an-2=….

  (2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.

  4.等比数列的特征

  (1)从等比数列的定义看,等比数列的任意项都是非零的',公比q也是非零常数.

  (2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

  5.等比数列的前n项和Sn

  (1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

  等比数列知识点

  1.等比中项

  如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

  有关系:

  注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

  2.等比数列通项公式

  an=a1_q’(n-1)(其中首项是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n项和

  当q≠1时,等比数列的前n项和的公式为

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  当q=1时,等比数列的前n项和的`公式为

  Sn=na1

  3.等比数列前n项和与通项的关系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比数列性质

  (1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;

  (2)在等比数列中,依次每k项之和仍成等比数列。

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  (5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

  (6)任意两项am,an的关系为an=am·q’(n-m)

  (7)在等比数列中,首项a1与公比q都不为零。

  注意:上述公式中a’n表示a的n次方。

  等比数列知识点总结

  等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

  1:等比数列通项公式:an=a1_q^(n-1);推广式:an=am·q^(n-m);

  2:等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  4:性质:

  ①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an

  证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1+k)·a(n-k)=a1·an

  对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即:a(1+k)+a(n-k)=a1+an


高中数学导数知识点总结3篇(扩展4)

——高中数学总结 (菁选3篇)

高中数学总结1

  本学期我担任高一(4)班的数学教学工作,一向本着实事求是、脚踏实地的工作原则,圆满完成本学期的教学任务,并在思想水*、业务水*等方面有很大的进步,现就一学期的工作总结如下:

  一、思想**方面

  一年来,我用心参加**学习,**学习笔记整理的认真细致。我时刻用教师的职业道德要求来约束自己,爱岗敬业,严于律己,服从**分配,对工作尽职尽责,任劳任怨,注重师德修养。我始终认为作为一名教师应把“师德”放在一个极其重要的位置上,因为这是教师的立身之本。

  本人奉守“学高为师,身正为范”的从业准则,从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。热爱学生,坚持“德育为首,育人为本”的原则,不仅仅在课堂上坚持德育渗透,而且注重从思想上、生活上、学**全面关心学生,在学生评教中深受学生的敬重与欢迎。能严格遵守校级校规,严格按照作息上下班,团结同志,能与同事和睦相处。

  二、教育教学方面

  教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。

  (一)注意培养学生良好的学**惯和学习方法

  学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如以往的学习方法不能适应高中的学习,不良的学**惯和学习态度等一些问题困扰和制约着学生的学习。为了解决这些问题,我从下面几方面下功夫:

  1、改变学生学习数学的一些思想观念,树立学好数学的信心

  在开学初,我就给他们指出高中数学学习较初中的要难度大,资料多,知识面广,大家其实处在同一齐跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮忙他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。

  2、改变学生不良的学**惯,建立良好的学习方法和学习态度开始

  有些学生有不好的学**惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意等。为了改变学生不良的学**惯,我要求**作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,让学生写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。透过努力,大多数同学能很快理解,慢慢的建立起好的学习方法和认真的学习态度。

  (二)日常数学教学的方法及对策

  1、备课

  本学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。高一虽然已经教过了几轮,但是每一年的感觉都不一样。从不敢因为教过而有所懈怠。我还是像一位新老师一样认真阅读新课标,钻研新教材,熟悉教材资料,查阅教学资料,适当增减教学资料,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。其次,深入了解学生,根据学生的知识水*和理解潜力设计教案,每一课都做到“有备而去”。并用心听老教师的课,取其所长,并不断归纳总结经验教训。

  2、课堂教学

  针对高中学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

  课堂上我个性注意调动学生的用心性,加强师生交流,充分体现学生在学习过程中的主动性,让学生学得简单,学得愉快。在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。同时更新理念,坚持采用多**辅助教学,深受学生欢迎。每堂课都在课前做好充分的准备,并制作各种利于吸引学生***的搞笑教具,课后及时对该课作好总结,写好教学后记。

  (三)课后辅导

  课后在给学生解难答疑时耐心细致,使学生在理解新知识的同时,不断地对以往的知识进行复习巩固。在“导师制”活动开展后,我负责一年四班xxx同学的数学学习,除了在课堂上关注她,课后也及时进行交流,帮忙她解决学**的疑惑。还利用每周八、九节的时间对她集中辅导答疑,经过近一个学期的努力,她的数学成绩由年级第142名进步到年级37名,总成绩也由年级第52名进步到年级18名。批改作业认真及时,透过批改作业能够了解学生对知识的掌握状况。

  三、履行工作职责状况

  多年来,遵守劳动纪律,从不旷工旷课,连事假病假也很少,一心扑在教育事业上。勤勤恳恳,任劳任怨,从没有因为个人的原因而拉下工作,也没有迟到早退现象。同组老师有事需要代课时也能主动的承担代课任务。

  本学期由于教务处人手紧缺,我服从学校的安排,在完成自己教学工作的同时,也担任教务处的部分工作,并顺利的完成。

  四、工作成绩方面

  半年来,参加各种教科研活动。数学组改变课堂教学方式,我**一年组理科**一节公开课。还参加了“骨干教师”竞赛活动,获得了课件、说课两项一等奖,上课二等奖的良好成绩。除此外还获得了多项荣誉及证书。

  总之,高一数学教学工作已经告一段落,取得了必须的成绩,但也存在一些不足。教学是无止境的,在以后的教学工作中,我将不断学习,更新教育观念,注重教育科研,努力提高教育教学质量,争取将自己的教学水*提高到一个崭新的层次。

高中数学总结2

  一、问题的提出

  相比较于义务教育阶段的课堂教育**,高中数学课堂教学**起步相对较晚,对数学素质教育和创新教育的研究取得了一定的成绩,但这更多地是停留在理念和方法上,缺少可操作性的内容,对数学课堂教学**也有很多地方取得了较好的效果,如上海育才中学的“读读、议议、讲讲、练练”教学法、岳阳县一中的“四环递进”教学法、长沙教科所的“六环节自学辅导型教学法”等,本地区已取得较为突出成绩的有醴陵二中“高中数学分层学导式教学法”等,这些教学法都有较为具体的操作程序,尤其是非常注重学生自学能力的培养,通过这些教学方法的**,取得了显著的成绩,培养了一批年轻教师,形成了颇具特色的课堂教学模式,发行了较有影响的学习资料,但这种较为单一的课堂教学方式对整个高中的数学教学而言毕竟还是有一定的局限性,不同的内容应该采用不同的教学方法。

  随着高中课程**的不断深入,当前高中数学课程内容越来越丰富,单一的一种课堂教学模式已远远不能满足课程的需要。我们试图在借鉴已取得的先进经验的基础上,运用科学的教育理念和教学思想,结合新一轮高中课程**的要求,通过对高中教学课程内容的分析,形成针对不同课型、内容、学生的教学方式,确定不同的教学策略,并使之规范化、系统化、科学化,从而更好地推动高中教学的课堂教学**。

  教无定法,教亦有法,就高中数学课堂教学而言,如何让学生有效掌握数学基本知识技能,如何培养学生基本数学素养及基本数学能力,这是数学课堂教学永恒不变的主题。新课程的推行及新课程理念的确立给传统的数学课堂教学带来了根本性的冲击。在这种新形势下,如何更好的实现新旧理念的接轨,如何更好的规范数学课堂教学构建一套“形变而神凝”(课堂形式多变——针对课堂教学内容及对象的不同、鼓励个性发展,而课堂教学基本思想不变)的课堂教学模式,寻求不同的教学策略,对规范数学课堂教学、培养学生个性及能力、大面积提高教学质量极为必要,这应成为一个主要的研究方向。

  二、理论依据

  建构**学习理论:建构**学习理论认为,学习是在教师的指导下,以学生为中心的学习,学习过程是主动建构知识的过程,学习应是一个交流合作的互动过程,学生掌握能解决问题的程序任务比掌握知识内容更重要。因此,教学中必须要充分调动学生的积极性,教师应该指导学生完成学习任务,达成学生目标,形成知识系统。

  高中数学新课程的教学理念:数学教学活动应是学生经历“教学化”、“再创生”的活动过程,数学教学活动应帮助学生构建发展认识结构,教学活动是师生的互动过程,有效的教学是引导学生的学习,激发学生自己学习,帮助学生通过自己的思考建立起自己对教学的理解力。因此,教师要转变自己的角色和心理定位,教师不只是知识的讲授者,还应是课堂教学的设计者、引导者,**者和学生学习的合作者、评判者。

  认知学教学理论:认知学教学理论的**人物加涅认为:不管教学是否存在,学习都会发生,但可以通过教学来影响学习,通过教学规划虽不会导致学习的发生,但有助于学习者的学习,同时指出教学方法包括教材呈现的方式、师生相互作用的方式和教学**的选择与运用等,教师应根据不同的学习类型选取不同的.教学方法。

  三、研究目标:

  ①对高中教学内容的课型形成一个较为科学、系统的划分,并形成界定标准。

  ②针对不同课型构建一个开放、动态、完善、可操作性的教学模式系统。

  ③提高教师的教学研究能力,真正做到通过研究提高教学质量,减轻教师负担的目的,形成一支科研型的教师队伍。

  ④通过改进教学方法,激发学生学习兴趣,培养学生自学能力、迁移能力,提高学生分析问题和解决问题的能力,掌握科学的学习方法,形成良好的思维习惯,全面开发学生潜能,培养创新意识和创新能力。

  四、研究内容:

  (一)对高中教材分章节、模块进行研究,寻找高中数学知识的呈现方式、知识间的内在联系,研究教材的功能发挥及使用方法。

  (二)高中数学教学课型的界定及标准,特别是新授内容中概念课课型的界定。

  (三)探求高中数学新授课、复习课、试卷讲评课的教学策略研究,新授课中教学基本原理的认知与基本原理的应用教学策略研究。

  1、从高中数学教材入手,通过对知识体系、新知呈现方式、内容的时效性等多角度的研究和分析,结合目前高中的教学实际,考虑以上课的时效性为一级标准,将数学课型分成四大类:新授课、单元复习小结课、高三复习课、试卷讲评课,以新授内容的性质和呈现方式为二级标准,将新授课分为数学基本原理的认知与构建、数学基本原理的应用与深化、数学基本概念新授课等课型。

  2、针对不同课程构建不同的教学流程,强调学生的主体地位,特别注重学生思维的充分暴露,强化知识体系的建立,确定明确的教学方法和教学**,有力地促进学生更加主动地学习,较好地构建知识体系,形成良好的思维品质。下面为拟采用的教学方法:

  A、关于数学基本原理的认知与建立的教学主要采取“导引探究式”教学方法。主要教学流程为

  1、创设问题情境,诱导学生发现、提出问题,激发探究欲望

  2、创设思维情境,启导学生发现解决问题的思路和方法,培养学生创新思维能力

  3、释疑解惑,引导学生**解决问题,培养逻辑推理能力

  4、精讲总结,理性归纳,使学生形成新的认知结构

  5、精心设计变式分层练习,使学生在运用知识中形成技能,培养学生迁移与创新的能力

  B、关于数学基本原理的应用及深化的教学主要采取“演练互议式”教学方法,基本做法是:

  (1)出示问题

  (2)学生板演

  (3)师生评议

  (4)师生共同小结。

  C、数学基本概念、公式的起始课采用读、导、演、拓教学方法,主要流程为:

  (1)学生自读

  (2)教师导引

  (3)学生演练

  (4)拓展深化。

  D、关于数学知识结构(小结与复习)的教学主要采取“问题模块链接式”教学模式,主要流程为:

  (1)设计问题链,根据知识结构的特点及学生的掌握情况设计问题链,这个问题链一方面要能充分体现知识点之间、知识模块之间的横、纵向联系,问题要设置在点与点的交汇处,另一方面还要注意从知识模块的背景、内涵与外延、应用等方面出发以充分体现知识模块的地位和作用

  (2)师生小结

  由问题链的解决梳理相关知识,形成体系,总结方法

  (3)迁移训练,通过设计综合练习题落实双基,形成能力。

  E、高三复习课主要采用“四环递进教学法”,主要环节为:提出问题,自学练习,评议小结,课堂小结;采用分层递进的方式教学。

  F、关于试卷讲评课主要采用“多维互动式”教学方法,主要环节为:

  a、小组合作解决一般性问题;

  b、师生合作,学生互问互答,老师点拨解决中等以上难度题;

  c、教师讲评,教师讲解普遍性问题,做好方法的归纳小结;

  d、评后反思,进行补偿性练习;

  (四)研究不同的教学方式、教学流程与课堂教学效果、学生学习能力的关系,并提出改进的方法与措施。

  ①高中数学知识的呈现方式、知识间的内在联系、教材的功能发挥及使用方法。

  ②高中数学教学课型的界定标准,特别是新授内容中概念课课型的界定。

  ③高中教学新授课、复习课、试卷讲评课的教学策略研究,新授课中教学基本原理的认知与基本原理的应用教学策略研究。

  ④不同的教学方式、教学流程与课堂教学效果、学生学习能力的关系研究。

  五、研究方法

  本课题以行动研究为主,以案例研究、比较研究为辅,主要通过高中三个年级的教师通过**的安排,分别对教材进行分类研究,确定教学策略,形成系列教案和教学课件。

  参考文献:

  1、新课程的教学**,张晖编著,首都师范大学出版社,2001年。

  2、《基于自主性学习的教学模式》,孟庆男,课程教材教法,2006。2。

  3、《论数学课题探究教学》,何李来、李森,课程教材教法,2005。3。

高中数学总结3

  在一年的数学教学中,我深深感到高一是数学学习的一个关键时期,有必要探索高一数学学习障碍形成的因素,以便寻找解决对策。

  一、高一数学学习的障碍有以下几个方面原因

  1、教材的原因。

  高中数学的教学内容与初中相比有一个很大的飞跃。

  首先,与初中数学相比高中数学的难度一下子增加了许多,正体现了知识发展的加速现象;

  第二,从内容的表述上看,初中数学比较重视从贴近日常生活实际的方式形象地引入,因此显得比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,高中数学则越来越以数学的规范形式进行表述。

  而且,高一数学一开始触及到集合语言、函数语言、逻辑语言这些内容,因此概念抽象、定理严谨、逻辑性强。教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大和容量多”的特点。再加上高一第一学期的课时紧,故教学进度一般较快,从而增加了教与学的难度,这样,不可避免地造成学生不适应高中数学学习。

  2、教法的原因。

  初中数学教学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解,多次演练,从而各个击破;但是进入高一以来,教材内涵丰富,教学要求高,教学进度快,知识信息广泛,题目难度加深,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑,且高一教学往往通过设导、设问、设陷和设变,启发引导,开拓思路,然后由学生自己思考去解答,比较注意知识的发生过程,这使得刚入高一的学生不容易适应这种教学方法。

  3、学法原因。

  这里既有方式上的原因:在初中,教师讲得细,类型归纳得全,反复练习,考试时,学生只要记忆概念、公式及例题类型,一般都可以取得好成绩,因此,学生习惯于围着教师转,不需要**思考和对规律进行归纳总结,学生满足于你讲我听,缺乏学习的主动性。而到了高一,数学学习要求学生勤于思考,善于归纳,总结规律,掌握数学的思想方法,做到举一反三,触类旁通。而刚入学的大部分高一学生往往沿用时的初中学法,致使学习出现困难。

  也有思维方法上的原因:不少高一学生还是沿袭初中的思维方式,初中数学教学中常把许多问题的解决建立为**固定模式,如解方程分几步,因式分解先看什么,后看什么,证线段或角相等,三角形全等或相似的模式有哪几种等等。初中生习惯于这种机械、便于操作的思维定势;而高中数学知识要求在思维方式上产生变化:在灵活性、可拓展性、创造性方面提出了高要求。所以高一学生较难在很短时间就适应这种对思维能力要求的突变不能尽快适应新的学习生活。

  二、帮助高一学生消除数学学习障碍的对策

  1、搞好初高中教学衔接。

  教师在教学初始应**进度,不能求快而增大学习难度,要注意数学知识相经联系的,高中数学知识要涉及初中的内容,很多地方是初中知识的延拓和提高,但不是简单的重复。因此在教学中正确处理好二者的衔接,深入研究两者彼此潜在的联系和区别;做好新旧知识的串联和沟通,为此,在高一教学中必须采用“低起点,小步于”的指导思想,帮助学生温习旧知识,恰当地进行铺垫,以减缓坡度,分解教学过程,分散教学难点,让学生在己有的水*上,通过努力能够理解和掌握知识,并引导学生对知识加以区别和联系,每涉及到新的概念。

  定理等都要结合初中己学过的知识,以激发学生的兴趣和求知欲。为了使高一学生很快从初中的方法中走出来,作为联结,“直观化”是高一数学起始教学必须遵循的原则,通过实物直观、模型直观和语言直观等直观化的方法,使学生对抽象的概念形成鲜明的表象,减少学生理解过程中的障碍。对于知识含量较大,学生记忆效果不佳的部分内容,教师必要进行梳理,作表格化、类化、链式递进的处理等,使内容易懂易记。

  这样,不仅可以激发学生的求知欲,而且可以培养他们的创造能力。教师在处理教学内容,引导学生思维时,可以将思维的目标问题分解为若干个循序渐进的环节,让学生的思维水*从形象思维沿着小坡度的台阶向抽象思维步步升华,在处理问题时,一个问题各环节之间、问题与问题之间要注意避免脱节、跳跃,注意铺*道路,减少学生思维发展障碍。

  这样学生从己有的经验出发,用特殊对象描述一般对象就可以在己有的思维水*基础上有所进步和发展。总之,教师在教学时做到抽象概念形象化,抽象结论具体化,抽象方法通俗化,给学生有一段适应的过渡缓冲期,学生就可以很快形成良好的抽象思维能力,消除学习数学的障碍。

  2、加强学法指导,培养良好的学**惯。

  良好学**惯是学好高中数学的重要因素,它包括制定计划、课前复习、专心上课、及时复习、**作业、解决疑难、系统小结和课外学习这几个方面,改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中**出来,引导学生养成课前预习的习惯,可布置一些思考题和预习作业,保证听课时有针对性,还要引导学生学会听课,要“心到”即***高度集中,对知识能触类旁通,多方联想,当学生听到“增函数”,就应该联想起增函数性质图像,函数在单调区间内,函数值随着自变量的增大而增大,图象在单调区间从左到右单调上升趋势。

  “眼到”即仔细看清老师每一步板演、“手到”即适当做好笔记、“口到”即随时回答老师的**,以提高听课效率,引导学生养成及时复习的习惯,下课后要反复阅读书本,回顾每堂课上老师所讲内容,查阅有关资料,或向教师同学请教,以强化对基本概念、知识体系的理解和记忆;引导学生养成**作业的习惯,要**地分析问题、解决问题,切记有点小问题或习题不会做,就不假思索地请教老师同学;引导学生养成系统复习小结的习惯,将所学新知识融人有关的体系和网络中,以保持知识的完整性。

  引导学生养成阅读有关报刊和资料问题,以进一步充实大脑,拓展眼界,保持可持续发展的后劲,加强学法指导应富于知识讲解、作业评讲、试卷分析等教学活动中。另外,还可以通过举办讲座介绍学习方法和进行学习目的及学法交流,学生掌握科学的学习方法,学会学习,提高学习效率,变被动为主动,从而不断地消除学习数学的障碍。

  3、培养学生的数学兴趣。

  心理学研究成果表明,推动学生进行学习的内部动力是学习动机,而兴趣即是构建学习动机中最现实、最活跃成分,浓厚的学习兴趣无疑会使人的各种感受尤其是大脑处于最活跃的状态,使感知更清晰、观察更细致、思维更深刻,想象更丰富、记忆更牢固,能够最佳地接受教学信息,不少学生之所以视数学学习为苦役,为畏途,主要原因还在于缺乏对数学的兴趣,因此教师要着力于培养和调动学生学习数学的兴趣。课堂教学的导言,需要教师精心构思,一开头,就能把学生的思维活跃起来使他们对数学学习产生了浓厚的兴趣。

  还可通过介绍古今中外数学史,数学方面的伟大成就,阐明数学在自然科学和社会科学研究中,尤其在工农业生产、军事、生活等方面的巨大作用,来引导学生对数学的兴趣。在课堂教学中,要针对不同层次的学生进行分层教学,从学生的实际情况出发,兼顾学习有困难的和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。让他们有所得,发现自己的学习成效,体会探索知识的乐趣,才能使学生学习数学的兴趣得到持续。

  4、学生能力的培养。

  培养学生能力,消除高一学习数学障碍的重要环节,主要有:

  (1)培养学生**学习的能力;

  (2)培养学生分析问题和解决问题的能力;

  (3)培养学生的准确计算能力;

  (4)培养学生推理和转换能力;

  (5)培养良好的心理素质,发挥非智力因素的作用。

  总之,高一数学的起步教学阶段,分析清楚学生学习数学的障碍,只要教师采取正确的措施,适当地处理教学内容,便能使学生尽快适应高中数学的学习,从而更高效、更顺利地接受新知和发展能力,高中数学教学就能取得成功,为全面推进素质教育作出应有的贡献。


高中数学导数知识点总结3篇(扩展5)

——高中数学水*考知识点归纳 (菁选3篇)

高中数学水*考知识点归纳1

  集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1.元素的确定性;

  2.元素的互异性;

  3.元素的无序性

  说明:

  (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是*等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{_-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{_2=-5}

高中数学水*考知识点归纳2

  集合的分类

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的.一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N_;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为**,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

  2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

  它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高中数学水*考知识点归纳3

  1、导数的定义:在点处的导数记作.

  2.导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。


高中数学导数知识点总结3篇(扩展6)

——高中数学*面向量的公式的知识点总结 (菁选3篇)

高中数学*面向量的公式的知识点总结1

  定比分点公式(向量P1P=λ向量PP2)

  设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。

  若P1(x1,y1),P2(x2,y2),P(x,y),则有

  OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

  x=(x1+λx2)/(1+λ),

  y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

  我们把上面的式子叫做有向线段P1P2的定比分点公式

  三点共线定理

  若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

  三角形重心判断式

  在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

  [编辑本段]向量共线的重要条件

  若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

  a//b的重要条件是 xy'-x'y=0。

  零向量0*行于任何向量。

  [编辑本段]向量垂直的充要条件

  a⊥b的充要条件是 ab=0。

  a⊥b的充要条件是 xx'+yy'=0。

  零向量0垂直于任何向量.

  设a=(x,y),b=(x',y')。

高中数学*面向量的公式的知识点总结2

  向量的加法满足*行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

高中数学*面向量的公式的知识点总结3

  定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

  定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。

  向量的数量积的坐标表示:ab=xx'+yy'。

  向量的数量积的运算律

  ab=ba(交换律);

  (λa)b=λ(ab)(关于数乘法的结合律);

  (a+b)c=ac+bc(分配律);

  向量的数量积的性质

  aa=|a|的*方。

  a⊥b 〈=〉ab=0。

  |ab|≤|a||b|。

  向量的数量积与实数运算的主要不同点

  1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

  2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

  3、|ab|≠|a||b|

  4、由 |a|=|b| ,推不出 a=b或a=-b。


高中数学导数知识点总结3篇(扩展7)

——高中数学教学总结15篇

高中数学教学总结15篇

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能使我们及时找出错误并改正,因此我们要做好归纳,写好总结。总结怎么写才不会流于形式呢?以下是小编收集整理的高中数学教学总结,仅供参考,大家一起来看看吧。

高中数学教学总结1

  本学期我担任二年级(5)(6)的数学教学工作。一学期以来我努力根据学生的实际状况和自己的实际困难,采取确实可行的措施,积极调整教学思路,整合教学资源,同时以激发学生的学习兴趣、培养学生良好的学**惯为目的,在教学中引导学生参与学习,交给学生学习方法,让学生成为学习的主宰。缺憾总是存在的,由于母亲生病住院,学生的作业批改不够及时,学生的一些隐性的问题可能没有及时发现,会给教学留下一些遗憾。

  20xx——20xx学年度第二学期已经一去不复返,为了总结经验,吸取教训,弥补短板。现对本学期的教学工作作如下总结:

  一、积极落实素质教育

  坚持正确的教育思想,树立与素质教育相适应的教学观念,改变“以知识为本”的传统认识,树立“以学生发展为本”的新理念。例如:方向与位置,测量,数学好玩等内容,我引导学生自主学习,让学生当“小老师”,极大地激发了学生的兴趣,**了学生的眼睛、嘴巴和手,还给学生创造操作、实验的机会;**思考的机会;表达自己想法的机会;自我表现的机会,使学生能以良好的心境,以一种简单、愉快的情绪去用心主动的参与学习。

  二、努力提高课堂教学质量

  1、关于备课。

  学期初,钻研了《数学课程标准》、教材、教参,对学期教学资料做到心中有数。学期中,着重进行单元备课,掌握每一部分知识在单元中、在整册书中、在整个小学阶段的地位、作用。思考学生怎样学,学生将会产生什么疑难,该怎样解决。在每节课上课之前,又阅读各种教学杂志,学习名师和同行对某些环节的处理,用于自己的教学,努力体现教师的引导作用。充分理解课后习题的作用,设计好有层次、有梯度的练习。

  2、关于上课。

  课堂是教学的“主阵地”,也是师生活动的“主战场”。课前的准备工作是至关重要的,如何以备课为蓝本,又不拘泥于蓝本,就看老师的课堂艺术和处理课堂的生成的能力了。不过我尽量使讲解清晰化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上注意调动学生的用心性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得简单,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分思考每一个层次的学生学习需求和学习潜力,让各个层次的学生都得到提高。学生的倾听能力的训练是我们这一学期研究的小课题,所以课堂上孩子是否在倾听,在思考,在参与,我时刻关注,及时提醒。

  (1)创设各种情境,激发学生思考。针对新知,放手让学生探究,动手、动口、动眼、动脑;针对教学重、难点,让学生进行比较、交流、讨论,从中掌握知识,挖掘潜力;针对练习,又通过不同坡度,不同层次的题目,巩固知识,构成潜力,发展思维;针对总结,尽量让学生自己小结学到的知识以及学到的方法。这样大部分学生对数学课感兴趣,参与度高,他们不再是“看客”,而是参与者和合作者。

  (2)及时复习。新知识的遗忘规律是随时间的延长而减慢,我的做法是:新授知识基本是当天复习或第二天复习,以后再逐渐延长复习时间。这项措施十分适合低年级学生遗忘快、不会复习的特点。

  (3)构建知识网络结构。一般做到一个单元一整理,构成单元知识串;我还利用复习的契机,交给学生复习的方法,比如:框架复习法、智慧树复习法、列表复习法等,一学期结束学生对着本册书的目录回忆所学的知识,对整册书进行整理复习,连成知识网。学生经历了教材由“薄”变“厚”,再变“薄”的过程,既构成了知识网,又学到了方法,可谓是既授之于鱼,也授之于渔。

  3、关于作业。

  学生作业是联系老师、学生、家长的一项显性的工作,我采用的办如下:

  (1)课堂作业面批,课堂上的作业,我尽量面批,只点出错题,不指明错处,让学生自己查找错误,找出来的给予表扬和鼓励,找不出的时候再同桌互找,这样一点一滴培养学生的分析问题的能力和检查作业的习惯。

  (2)晚上作业,每天早上小组长收起作业,送到办公室,利用晨会时间我都要浏览一遍,然后根据作业情况作出辅导和调整。个性问题单独聊,共性问题集中解决。

  (3)方法调整,我是这样跟和家长沟通的,二年级的学生,已经具备读题的的能力和一些理解能力了,不要坐在旁边看着孩子写作业了,要鼓励学生**完成作业,并自己要检查一遍,然后运用我课堂上的方法让家长检查作业,这样,家校合一,更有利于孩子良好习惯的养成。

  4、关于对后进生的辅导。

  后进生分层次要求。在教学中注意降低难度、放缓坡度,允许他们采用自己的方法慢速度学习。引导他们先自学,“笨鸟先飞”吗?在教学中时刻关注他们的学习兴趣和自信心,凡是他们能回答的问题一定交给他们,他们不会的时候走到身后慢慢的讲给他们听。对后进生百倍关爱,用放大镜找出他的优点,及时给予表扬,增进他们学习数学的勇气和信心。

  5、让学生尝试写数学日记。

  本学期的学习中,“方向与位置”“测量”“时分秒”“数学好玩”等内容和数学息息相关,我就指导学生观察生活,找一找身边的数学信息,然后规定日记主题,让学生写数学日记,开始时他们写的仅仅是三言两语,但我相信随着时间的推移他们会有收获的,并且当多数学生会写数学日记后,他们会自主地写数学日记的,数学日记是很好的运用数学知识的过程,又是激发学习兴趣的方法,可取!

  三、虚心请教其他老师。在教学上,有疑必问。

  在各个章节、每一个有疑问的地方,每个假期布置作业,我们三个同学科的三位老师都会聚在一起,探讨、研究、出谋划策,征求意见,互相学习,取长补短。同时,积极聆听年轻教师的赛讲课,以年轻教师结对子,名誉上我们是老师,实际上年轻老师的思维和想法更大胆,更富于创新,所以我们是共同学习体。

  四、存在的问题和困惑。

  1、家长和教师的教育观念存在差异。由于家长和教师的工作性质和所处环境的不同,从而导致教育观念的不同。有个别家长对自己的孩子不闻不问,不加以引导任其**发展,而有的家长对自己的孩子管的过死,不给孩子留有玩耍的时间,从而导致学生与教师在管理学生上的分歧,很多的教学计划不能很好的落实到位。

  2、在教学中,如何充分挖取有效的教学资源,提高课堂教学的实效性,还需要在以后的教学工作进一步探讨、研究。

  3、后进生的转化有些成效,但还不尽如人意。

  今后的工作中,我将继续俯下身子,甩开膀子,以学校工作为重点,家校兼顾,发扬优点、克服不足,以取得更好的成绩!

高中数学教学总结2

  在新课程背景下,如何构建高效课堂教学,提高学生的学习效率,对于一个高中教师来说,是很重要的课题。本人结合这几年的教学经验,谈谈自己的几点总结。

  课堂教学是实施高中新课程教学的主要阵地,也是对学生进行思想品德教育和素质教育的主要途径。课堂教学不但要加强双基、提高和发展学生的智力,而且要培养学生的创造力;不但要让学生掌握课本知识,而且要让学生掌握学习的方法。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂上的学习效率,在有限的时间里,出色地完成教学任务。一、选择恰当的教学方法

  每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,对象的变化,灵活应用多种教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如,在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度,这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。因此,在一堂课上,有时要同时使用多种教学方

  法,“教无定法,贵要得法”,只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。二、要善于应用现代化教学**

  在新课标和新教材的背景下,教师掌握现代化的多**教学**显得尤为重要和迫切。现代化教学**的显著特点:①能有效地增大每一堂课的内容量,从而把原来45分钟的内容在35分钟内就可以解决;②减轻教师板书的工作量,使教师能有精力精讲所举例子,提高讲解效率,使学生能够很好的把握教学重难点;③直观性强,容易激发学生的学习兴趣,有利于提高学生的学习积极性;④有利于对课堂所学内容的回顾和总结。因此,教师应利用业余时间掌握现代化教学**的技巧和方法。

  三、重视基础知识、基本技能和基本方法

  众所周知,**来,数学试题的新颖性、灵活性越来越强,不少教师把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中只是机械罗列公式和定理,或草草讲解一道例题,就通过大量的试题来训练学生。其实,在定理、公式的推证过程中,蕴含着重要的解题方法和规律。教师没有充分展示思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理,结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水*较低,有时甚至生

高中数学教学总结3

  时光荏苒,转眼间一个学期已经结束。作为一名数学教师,为了今后更好的投身教育事业,争取更大的进步,现将本学期的教学经验总结如下:

  首先,课堂上不随意和学生闲聊,特别是一对一教学课堂上,这样会使家长觉得我们是在带孩子玩。课堂是学生学习的主战场,要让学生正确认识时间的匆忙和一去不复返,并能充分的利用好课堂两个小时。

  其次,老师要有深厚的功底,正所谓台上一分钟台下十年功。如果没有扎实的专业基础,面对学生渴求知识的眼神,面对学生的**若似是而非忽悠而过,那样会严重戳伤学生学习数学的兴趣,会让学生觉得自己是一个不够格的老师。这学期我除了认真备课,认真上好每一节课,及时做好课后辅导、陪读外,还坚持旁听听其他老师的课,希望能从他们那里学到更多教学宝典,经典教学方法,精辟的习题,尽量少走弯路。在业余时间我也不忘充实自己,大部分时间都花在研究习题,研究教学方法,做高考题上。

  本学期已经结束了,我发现一些高中学生数学学习还停留在初中的思维上,如朱佳慧、胡明等。他们没有充分认识到初高中数学的区别,导致数学成绩徘徊不前。初高中数学的区别主要有:

  1、知识的差异:初中数学知识少、浅、难度低、知识面窄。而高中数学知识多而广,它是对初中知识的拓展和完善。如初中你跟学生说一个数的*方可能为负数,他们根本无法接受,但到了高中接触了复数,在初中学习*面解析几何我们知道两条直线不是*行就是相交,但当我们接触了立体几何后知道两条直线还有可能异面。初中研究角度只在0°~360°之间,到了高中就扩充为任意角。对学生的抽象逻辑思维和空间想象力有了更高的要求。

  2、学习方法的差异:初中课堂教学量少、知识简单,通过教师课堂较慢的讲解,加之课后大量习题的反复练习和讲解,相信再笨的学生也能依葫芦画瓢。而高中数学随着课程开设的增多,每天用在数学上的时间少了,而且高中数学题型千变万化,只要稍微改一个字母改一个符号解题方法解题思路都会截然不同。

  因此我们最重要的是要掌握高中数学四大解题思想:数形结合、化归、换元、分类讨论。在多做题的基础之上学会自我分类自我总结归纳,到了高中同学们也要慢慢养成自学的好习惯。课堂时间有限,在有限的时间里老师能传授给大家的知识也是屈指可数的,而科学在不断的发展,考试在不断的**,高考也随着全面的**不断的深入,数学题型的开发在不断的多样化,**来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。 以上是我本学期教学过程中的收获,与大家分享,望各位同仁指点一二。

高中数学教学总结4

  今年的高考结束了,我有幸担任了学校一个艺术班的数学教学工作,令我欣慰的是考试成绩斐然,自然又很多心得,现把我对艺术班的教学谈谈自己的看法:

  艺术班的教学和其它非艺术班的教学有很大的不同,学生既要学习文化知识,又要学习专业科知识。时间非常紧张,并且文化科知识的学习肯定会受很大的影响,所以大部分学生的基础也很薄弱。在这种情况下怎样在有限的时间里能比较快的提高成绩呢我和我们数学备课组全体老师群策群力想了好多办法和措施来解决上述问题,具体做法如下:

  一、团结协作,发挥集体力量。高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有**要求又有各班实际情况,既有"学生容易错误"地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流。在任何地方,任何时间都有我们探讨,争议,交流的声音。

  二、掌握学情,做到有的放矢。深入学生中去了解学生的实际学习情况,学习水*和学习能力,在第一次测试中,学习成绩比估计要高,此时及时调动教学内容,加大课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益。

  三、关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

  四、抓好"三中",树立学习信心。抓好"三中"即中等题,中等分,中等生,对学生来说认真研究好中等题,拿好中等分是基本,是高考信心的保证;抓好中等生是全面提高教学质量的根本。

  五、“注重”“三点”,培养学**惯。高三复习注意到低起点,重探究,求能力的同时,还注重抓住分析问题,解决问题中的信息点,易错点,得分点,培养良好的审题,解题习惯,养成规范作答,不容失分的习惯。

  六、“内临”“外界”,关注全体学生。认真分析数学临界内的临界生和临界外的临界生的学习数学的状态,采用分层管理和分层教学。比如说每次测试都能在90分以上的同学,应给他们以**度,课后可做一些适合自己的题目。对一些优秀学生,我们采用了科组集体力量或聘请外来教师加强提高辅导,能进能出,激起学生的竞争意识,增强有效性;对一些数学"学困生",采用了低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。

  七、心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直下好,现在也一定学不好等,我们采用了个别交流学习方法,学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会,总结,一定会有进步的,不断关怀,帮助,指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。

高中数学教学总结5

  本着努力打造**年级、学习年级、**年级的总体目标,和教学夯实基础,管理狠抓落实、努力提高教育教学质量的理念,重点做了年级良好教风、学风的形成,新课改精神的贯彻、教学常规的落实、学生的养成教育和管理等方面的工作。现将本学期的工作情况作如下总结。

  一、学生管理方面

  (1)、着眼学生可持续发展,狠抓学生行为习惯的养成教育:

  高一年级作为高中阶段的基础年级,是对学生进行行为养成教育的关键时期,应充分利用这一时机对学生进行养成教育。

  1:开学伊始,我们就以新生军训为契机,配合政教处召开了以习惯书写人生,态度决定结果为主题的新生入学教育大会,宣讲学校各项管理措施,对新生提出明确要求,重点培养学生的吃苦耐劳精神及自律、自理、自强能力,磨练他们坚强的意志。

  2:班**有针对性地做工作。尽快促进学生养成良好的习惯。各课任教师也经常在班上反复阐明行为规范对学习、对人生的重要性,使学生做到自觉遵守各项纪律,养成良好的个人习惯。为下一阶段的学习打下了坚实的习惯基础。逐步形成一个规范、勤奋、进取、团结的年级集体。

  3:在各班级为每位学生建立学生成长记录袋,积极探索和构建符合学习实际的学生发展性评价体系,为学生的可持续发展着想。

  (2)、努力加强学生的思想道德教育,培养学生高尚的情操:

  在本学期,我们主要利用班会课及年级学生会议对学生进行爱校教育和日常行为规范教育及感恩教育。

  1:我们从9月10日起以感恩父母、感恩老师、感恩朋友为主题,分宣传、实施、总结三个阶段进行感恩教育活动。

  2:按学校要求认真策划**了高一年级《*心*情》爱国**演讲比赛。

  3:针对学生中存在的早恋现象,我们于12月13日晚召开了《美丽女生、美丽心灵》年级女生会议,由我和余红梅老师主讲,通过精心制作幻灯片,从科学的角度和系统的分析、讲解早恋及过早发生性行为对女生身体及身心的危害,教育女生做个自制、自尊、自爱的女生。

  4:以班**为核心,充分发挥年级学生会分会、团支部集体力量,日常教育与集体**相结合,在期末,从各班评选年级之星,及时表扬表现优秀的的同学,对各方面习惯差的同学逐步纠正,逐渐培养学生正确的世界观、人生观和价值观。

  (3)、重视学生明确学习目的教育及科学学**惯的培养。

  只有目标明确,才有奋斗的动力。只有方法得当,才能事半功倍。

  1:在开学初,我们在各班进行了《放飞梦想》教育宣传活动,让学生设立三年后的高考目标,并激励他们为目标持之以恒的努力。

  2:在11月29日到12月1日期间请师大支教教师董玮、徐晓俞对年级学生进行《我的理想与大学生活》专题讲座,激起学生对大学生活的向往,激发他们的学习兴趣。

  3:本学期,我们还要求每班建立读书一角,倡导每位科任教师把自己看过已不用的好书捐赠给自己所教的班级,以培养学生的阅读热情及阅读习惯。

  4:*时,我们也不定期召开年级部分学生座谈会,了解学生的学习动态、困惑及要求,及时为他们解决学习中的困难。

  (4)、狠抓班风、学风建设,重视营造教室文化,为学生成长创造良好的环境:

  本学期,我们还发动年级所有力量,以自习纪律为突破口,狠抓班风学风建设。

  1:年级组于9月初组建了年级学生分会,对学生的一些**情况进行督查及**,以协助年级组进行日常管理。

  2:推行一帮一学生导师制,让班上的每位学生选择一位自己喜欢的任课教师作为自己的德育导师,要求德育导师做到四个一:一周与学生谈话一次,一个月帮学生总结一次,一学期家访一次,教一份导师总结,让所有任课教师都有意识的参与班级管理,形成教育合力。

  3:建立了班**值日制,保证年级教学楼及宿舍每天都有班**巡查、管理。

  4:为强化班风学风,我们制作了《高一年级上课情况记录表》要求各任课教师发现学生中存在如考勤、纪律、作业等方面的问题及时记录并反馈班**,对学风不太好的班级,提出整改建议,达到全年级一盘棋。

  5:此外,我们还要求各班建设具有班级特色的教室文化,争取让教室每一面墙壁都会说话,营造浓郁的教室文化,达到潜移默化的教育效果。

高中数学教学总结6

  本学期,本人担任高一(4)、(5)班数学学科的教学工作,一学期来,本人以学校及教研组工作计划为指导;以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:

  一、授人以鱼,不如授人以渔

  古人云:“授人以鱼,不如授人以渔。”也就是说,教师不仅要教学生学会,而且更重要的是要学生会学,这是二十一世纪现代素质教育的要求。这就需要教师要更新观念,改变教法,把学生看作学习的主人,培养他们自觉阅读,提出问题,释疑归纳的能力。逐步培养和提高学生的自学能力,思考问题、解决问题的能力,使他们能终身受益。

  (1)、在课前预习中培养学生的自学能力

  课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,促使他们去看书,去动脑,逐步培养他们的预习能力。

  1、本小节主要讲了哪些基本概念,有哪些注意点?

  2、本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍?

  3、对照课本上的例题,你能否回答课本中的练习

  4、通过预习,你有哪些疑问,把它写在“数学摘抄本”上,而且从来没有要求学生应该记什么不应该记什么,而是让学生自己评价什么有用,什么没用(对于个体而言)少数学生的问题具有一定的**性,也有一定的灵活性。这些要求刚开始实施时,还有一定困难,有些学生还不够自觉,通过一个阶段的实践,绝大多数学生能养成良好的习惯。另外,在课前预习时,我有时要求学生在学习过程中进行角色转移,站在教师的角度想问题,这叫换位思考法。在学习每一个问题,每项学习内容时,先让学生问问自己,假如我是老师,我是否弄明白了?怎样才能给别人讲清楚?这样,学生就会产生一种学习的内驱力,对每一个概念,每一个问题主动钻研,积极思考,自觉地把自己放在了主动学习的位置。

  (2)、在课堂教学中培养学生的自学能力

  课堂是教学活动的主阵地,也是学生获取知识和能力的主要渠道。作为数学教师改变以往的“***”“满堂灌”的教学方式显得至关重要,而应采用**引导,设置问题和问题情境,**以及解答疑问的方法,形成以学生为中心的生动活泼的学习局面,激发学生的创造激情,从而培养学生的解决问题的能力。在尊重学生主体性的同时,我也考虑到学生之间的个体差异,要因材施教,发掘出每个学生的学习潜能,尽量做到基础分流,弹性管理。在教学中我采用分类教学,分层指导的方法,使每一位同学都能够稳步地前进。调动他们的学习积极性。对于问题我没有急于告诉学生答案,让他们在交流中掌握知识,在讨论中提高能力。尽量让学生发现问题,尽量让学生质疑问题,尽量让学生标新立异。在课堂教学中,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上可以看到更多的是学生正在积极的思考、热烈的讨论、亲自动脑,亲自动手,不等不靠,不会将问题结果完全寄托于老师的传授,而是在积极主动的探索。当然数学教学过程作为师生双边活动过程,学生的探索要依靠教师的启发和引导。在教学过程中,我也从来没有放弃对于学生的指导,尤其在讲授新课时,我将教材组成一定的尝试层次,创造探索活动的环境和条件。让学生通过观察归纳,从特殊去探索一般,通过类比、联想,从旧知去探索新知,收到较好的效果。

  (3)在课后作业,反馈练习中培养学生自学能力

  课后作业和反馈练习、测试是检查学生学习效果的重要**。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学能力。在学完一节、一课、一单元后,让学生动手“列菜单”,归纳总结,要求学生尽量自己**完成,以便正确反馈教学效果,通过一系列的实践活动,把每个学生的学习积极性都调动起来,成为教学活动的参与者和**者。

  学生自学能力的培养不是靠一朝一夕,要长期坚持的,三年来就是靠着这扎扎实实的教学,扎扎实实的学习才使我所教的两个班级的学生在自学能力上得到了长足的进步。科学安排,课前、课堂、课后三者结合,留给学生充分的自学机会。真正把学生推向主动地位,使其变成学习的主人,我想这是每一位教育工作者所梦寐以求的结果吧。

  二、数学教育创新

  大家都知道中学数学的教学内容为初等数学的基础知识,这些基础知识源远流长。不可能再有什么知识层面的创新了。更不可能要求学生发明创造什么新的初等数学的结论。因此,我个人认为数学教育创新应该着眼于学生建构新的认知过程,用数学的语言就是——“认知建模”。而这过程的创新应该体现在以下三个方面:

  1、勤于思考:创新的前题是理解。我们知道,数学离不开概念,由概念又引伸出性质,这些性质往往以定理或公式呈现出来。对定理、公式少不了要进行逻辑推理论证,形成这些论证的理路需要思维过程。为此,我们首先必须让学生对学习的对象有所理解。因为数学知识的获得主要依赖紧张思维活动后的理解,只有透彻的理解才能溶入其认知结构。这就需要拼弃过去那种单靠记往教师在课堂上传授的数学结论,然后套用这些结论或机械地模仿某种模式去解题的坏习惯。而要做到理解,就需要勤于思考。对知识和方法要多问几个为什么?如:为什么要形成这个概念?为什么要导出这个性质?这个性质、定理、公式有什么功能?如何应用?勤于思考的表现还在于对认知过程的不断反思、回顾,不断总结挫折的教训和成功的经验。避免墨守成规,勇于创新。

  2、善于**:学生在数学课堂中通过观察、感知学习的对象以后,要学会分析,要有自己的见解,不要人云亦云,要善于挖掘自己尚不清楚的问题,多角度,全方位地探究,并提出质疑。作为一个中学生,不见得也毋须什么问题都能自己解决。我们倡导的只是能对学习的对象提出多角度的问题,尤其是善于提出新颖的具有独特见解的问题。我认为会**是创新的一个重要标志。

  3、解决问题:学数学离不开解题,解题是在掌握所学知识和方法的基础上进行运用。解题可以训练技巧,磨炼意志。在解题过程中,首先应判断解题的大方向,大致有什么思路,在引导学生解题的探索过程中,要注意联想,要学会用不同的立意、不同的知识、不同的方法去思考,并善于在解题全过程**自己的行为:是否走弯路?是否走入死胡同?有没有出错?需要及时调整,排除障碍。这样长期形成习惯后,往往可以别出心裁,另辟解题捷径。这种思维品质也是创新的重要标志。为了让学生达到这个境界,必须让学生明确不要为解题而解题,要在解题后不断反思、回顾,积累经验,增强解题意识,提高能力。

高中数学教学总结7

  *****波斯纳 (posner)认为:“没有反思的经验只是狭隘的经验,至多是肤浅的认识。”他提出了教师成长的公式:成长=经验十反思。反思,可以使存在的问题得到整改,发现的问题及时探究,积累的经验升华为理论。又一个学期过去了,回想起来,我已经工作了五个年头,一份**,一分秋实,在教书育人的道路我付出了许许多多的汗水,同时也收获了很多很多。由于这一学年担任学校实验班的数学课,压力之大,责任之重,可想而知。现将本学期教学情况简要总结如下,以便总结经验,寻找不足。

  一、加强理论学习,积极学习新课程

  俗话说,理论是行动的先导。自山东省实行新课程以来,我是第一年带新课程的新授课,对新课程的认识了解还不够,因此,必须积极学习新课程**的相关要求理论,仔细研究新的课程标准,并结合山东省的考试说明,及时更新自己的大脑,以适应新课程**的需要。同时为了和教学一线的同行们交流,积极利用好互联网络,开通了教育教学博客,养成了及时写教学反思的好习惯。作为一位年轻的数学教师,我发现在教学前后,进行教学反思尤为重要,在课堂教学过程中,学生是学习的主体,学生总会独特的见解,教学前后,都要进行反思,对以后上课积累了经验,奠定了基础。同时,这些见解也是对课堂教学非常重要的一部分,积累经验,教后反思,是上好一堂精彩而又有效课的第一手材料。

  二、关心爱护学生,积极研究学情

  所谓“亲其师,信其道”,“爱是最好的教育”,作为教师不仅仅要担任响应的教学,同时还肩负着育人的责任。如何育人?我认为,爱学生是根本。爱学生,就需要我们尊重学生的人格、兴趣、爱好,了解学生习惯以及为人处世的态度、方式等,然后对症下药,帮助学生树立健全、完善的人格。只有这样,了解了学生,才能了解到学情,在教学中才能做到有的放矢,增强了教学的针对性和有效性。多与学生交流,加强与学生的思想沟通,做学生的朋友,才能及时发现学生学习中存在的问题,以及班级中学生的学习情况,从而为自己的备课提供第一手的资料,还可以为班**的班级管理提高一些有价值的建议。

  三、充分备课,精心钻研教材及考题

  一节课的好坏,关键在于备课,备课是教师教学中的一个重要环节,备课的质量直接影响到学生学习的效果。备课中我着重注意了这样几点:

  1、新课程与老课程之间的联系与区别;

  2、本节内容在整个高中数学中的地位;

  3、课程标准与考试说明对本节内容的要求;

  4、近几年高考试题对本节内容的考查情况;

  5、学生对本节内容预习中可能存在的问题;

  6、本节内容还可以补充哪些典型例题和习题;

  7、本节内容在数学发展史上有怎样的地位;

  8、本节内容哪些是学生可以自学会的,哪些是必须要仔细讲解的;哪些是可以不用做要求的;

  9、本节内容的重点如何处理,难点如何突破,关键点如何引导,疑惑点如何澄清等

  在教学过程过,特别重视学生对数学概念的理解,数学概念是数学基础知识,是考生必须牢固而又熟练掌握的内容之一。它也是高考数学科所重点考查的重点内容。对于重要的数学概念,考生尤其需要正确理解和熟练掌握,达到运用自如的程度。从这几年的高考来看,有相当多的考生对掌握不牢,对一些概念内容的理解只浮于表面,甚至残缺不全,因而在解题中往往无从下手或者导致各种错误。还特别重视学生对公式掌握的熟练程度和基本运算的训练,重点抓解答题的解题规范训练.

  四、落实常规,确保教学质量

  “落实就是成绩”,在教学过程中,特别关注学生的落实情况,学生的落实在教师教学的最后一个环节,也是最出成绩的一环。因此,教学中特别抓好了一下几点:

  1、书面作业狠抓质量和规范,注重培养学生的满分意识,关注细节与过程;

  2、导学案提前预习,上课检查,以提高课堂效率;

  3、《基础训练》和《导学练》采取不定期抽查的方式,督促学生及时跟上教学进度;

  4、单元测试及时批改,及时整理错题订正本。

  5、加强尖子生的数学弱科辅导工作,保证尖子生群体的实力;

  6、注重基础知识的训练。对基础知识灵活掌握的考查是高考数学的一个最重要的目标,因此高考对基础知识的考查既全面又突出重点,特别利用在知识交汇点的命题,以考查对基础知识灵活运用的程度.因此对基础知识的教学一定要在深刻理解和灵活应用上下功夫,以达到在综合题目中能迅速准确地认识、判断和应用的目的。其中,抓基础就是要重视对教材的研究,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

  五、更新观念,积极进行新课改

  首先,转变观念要充分认识新课改是教育教学的必然,教师要更新观念,要认真领会新课改的理念,了解课改

  革的目的.这样才不会在**当中迷失方向。

  其次,教师要不断学习不断积累,要掌握丰厚的专业知识,所谓”给人一杯水,自己要有一桶水”,要注意本学科与其它学科的联系,拓宽自身的知识占有。要多渠道采取不同**获取知识,教师除了看专业书籍,也要借助于网络**这一先进的**进行学习.要多和其它教师交流、沟通,提高合作意识,取长补短.

  同时,教师是教育、教学的**者,要充分理解学生,了解学生的实际情况,了解他们的兴趣和爱好,了解不同学生的智力差别,做到因材施教.教师要给学生充分的思维空间、活动空间,给他们展示自我的空间和舞台,活跃学生的思维,变被动的学习为主动的学习,全面提高学生的各方面能力.

  以上就是我在本学期的教学工作总结。由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在学校**老师,前辈的指导下,取得更好成绩。

高中数学教学总结8

  本学期以来,本人热爱本职工作,认真钻研业务知识,刻苦学习新的教育教学理论,努力延伸相关专业深度,不断提高自己的教学水*和思想觉悟,基本构成了比较完整的知识结构。在教学中严格要求学生,尊重学生,以学生为中心,以教师为主导,发扬教学**,实施因材施教。使学生学有所得,不断提高,为了下一学年的教育工作做的更好,本人特将本学期教学心得总结如下:

  一、**思想方面:

  我认真学习和研究*特色****理论体系,在实践中深入贯彻和落实科学发展观;树立高尚的世界观,人生观,掌握*****的立场、观点和方法,用学科的思想武装自己,用高尚的精神塑造自己,用****核心价值体系要求自己,坚决抵制各种错误和腐朽思想影响自己,以为人民服务为宗旨,以群众**为原则,不断加强自身思想道德修养,与时俱进,使自己跟上时代前进的步伐。

  我坚决拥护*的路线、方针和**,遵守国家法律、法令;关心时事**,关心校园的**与发展,认真执行校园的决议和各项规章**,尊敬**、团结同事、乐于助人、勇于奉献、虚心向他人学习,具有良好的道德品质和思想修养。

  二、教育教学工作方面:

  “学高为师,德高为范”。所以工作以来,我不断加强学习,丝毫不敢松懈。我一方面参加新课程培训,掌握新课程理念;另一方面,我便潜心研究教学方法,学习教学技术,将所学的教学理论与教学实践相结合;精心备课,上课,做好课后反思,在不断反思中积累宝贵的经验。我还用心去听各位老教师的课堂,吸取前辈的经验,完善自己的不足。

  要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:

  1、课前准备:备好课。

  2、认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,明白应补充哪些资料,怎样才能教好。

  3、了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。

  4、思考教法,解决如何把已掌握的教材传授给学生,包括如何**教材、如何安排每节课的活动。

  5、课堂上的状况。

  **好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其持续相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂**面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。

  6、要提高教学质量,还要做好课后辅导工作,有点的学生不能按时完成作业,有的学生抄袭作业。针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮忙工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。

  7、用心参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水*。

  8、热爱学生,*等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。

  我热爱自己的事业,从不因为个人的私事耽误工作的时间。并用心运用有效的工作时间做好自己分内的工作。

高中数学教学总结9

  一、加强集体备课,优化课堂教学。

  新的高考形势下,高三数学怎么去教,学生怎么去学?无论是教师还是学生都感到压力很大,针对这一问题高三数学备课组制定了严密的.教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基础。在集体备课中,注重充分发挥各位教师的长处,集体备课前,每位教师都准备一节课,集体备课时,每位教师都进行说课,然后对每位教师的教学目标的制定,重点、难点的突破方法及课后作业的布置等逐一评价。集体备课后,我根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和**了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。

  二、研读考纲,梳理知识。

  研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也是复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:

  (1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容

  (2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法)。

  三、重视课本,狠抓基础,构建学生的良好知识结构和认知结构。

  良好的知识结构是高效应用知识的保证。以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融会代数、三角、立几、解析几何于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式,一元二次方程,一元二次不等式,二次函数时,以二次方程为基础,二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。

  四、狠抓常规,强化落实与检查。

  精心选题,针对性讲评。我们发扬数学组的优良传统,落实“以练为主线”的教学特色。认真抓好每周的“周练”。“每周一练”、既要注重重点基础知识,出“小,巧,活”的题目;又要注意培养学生的能力,出有新意的题目,只要能抓住这两点,就是好题。

  对每次测验和练习,我都坚持认真批改,全面统计。为发挥学生的学习自主性,还要求学生对自己做错了的习题进行改错,提高习题课讲评的针对性与课堂教学的效率性。

  五、注重“三点”,培养学**惯。

  高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。

  六、选择填空题的地位与复习策略。

  虽然高考中选择填空题占分的比例接近50%,高考考它们的方向是基础与全面,为顾及到各层次的考生,高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,对于难的选择填空题,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了*时的训练,还应该多作选择填空题的专题训练以提高学生的解题技巧。

  七、不同学生不同要求。

  高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂**上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展**,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。

  对尖子生时时关注,不断鼓励。对学**有困难的学生,更要多给一点热爱、多一点鼓励、多一点微笑。关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

  心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生的积极性提高了,问的问题也多了起来,学习成绩也渐渐提高了。

高中数学教学总结10

  一、授人以鱼,不如授人以渔

  古人云:“授人以鱼,不如授人以渔。”也就是说,教师不仅要教学生学会,而且更重要的是要学生会学,这是二十一世纪现代素质教育的要求。这就需要教师要更新观念,改变教法,把学生看作学习的主人,培养他们自觉阅读,提出问题,释疑归纳的能力。逐步培养和提高学生的自学能力,思考问题、解决问题的能力,使他们能终身受益。下面,结合本人的三年的数学教学实践,浅谈自己的几点做法。

  1.在课前预习中培养学生的自学能力。

  课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,促使他们去看书,去动脑,逐步培养他们的预习能力。

  1、本小节主要讲了哪些基本概念,有哪些注意点?

  2、本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍?

  3、对照课本上的例题,你能否回答课本中的练习4、通过预习,你有哪些疑问,把它写在“数学摘抄本”上,而且从来没有要求学生应该记什么不应该记什么,而是让学生自己评价什么有用,什么没用(对于个体而言)

  在这里解释一下:“数学摘抄本”有别于“数学笔记本”,前者的内容包括课堂笔记、课后习题、解题技巧、数学史事、课外阅读材料的剪抄等等,是受到“语文摘抄本”的启发而衍生的产物。三年的实践表明:“数学摘抄本”要比“数学笔记本”的功能强过一百倍!(注:“数学摘抄本”为本人专利)

  少数学生的问题具有一定的**性,也有一定的灵活性。这些要求刚开始实施时,还有一定困难,有些学生还不够自觉,通过一个阶段的实践,绝大多数学生能养成良好的习惯。另外,在课前预习时,我有时要求学生在学习过程中进行角色转移,站在教师的角度想问题,这叫换位思考法。在学习每一个问题,每项学习内容时,先让学生问问自己,假如我是老师,我是否弄明白了?怎样才能给别人讲清楚?这样,学生就会产生一种学习的内驱力,对每一个概念,每一个问题主动钻研,积极思考,自觉地把自己放在了主动学习的位置。如在讲“**重复试验”时,我把这节内容留给学生课前思考,他们积极发挥主观能动性,准备了大量不同类型的实例和有关的练习。加深了对问题的理解。换位教学法,不仅能改变传统的教师讲,学生听的旧模式,而且还激发了学生课前积极思考主动探索的兴趣。

  2.在课堂教学中培养学生的自学能力。

  课堂是教学活动的主阵地,也是学生获取知识和能力的主要渠道。作为数学教师改变以往的“***”“满堂灌”的教学方式显得至关重要,而应采用**引导,设置问题和问题情境,**以及解答疑问的方法,形成以学生为中心的生动活泼的学习局面,激发学生的创造激情,从而培养学生的解决问题的能力。

  在尊重学生主体性的同时,我也考虑到学生之间的个体差异,要因材施教,发掘出每个学生的学习潜能,尽量做到基础分流,弹性管理。在教学中我采用分类教学,分层指导的方法,使每一位同学都能够稳步地前进。调动他们的学习积极性。对于问题我没有急于告诉学生答案,让他们在交流中掌握知识,在讨论中提高能力。尽量让学生发现问题,尽量让学生质疑问题,尽量让学生标新立异。

  在数学教学中有大量的解题活动,包括常规问题和非常规问题。教学实践的经验已经证明,题海战术不可取,重要的是交给学生数学解题的思维策略在解题活动中进行思维策略的训练。这种训练应包括解题过程的规范训练,常规问题的模式训练,非常规问题化归为常规问题的转换训练等。

  在课堂教学中,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上可以看到更多的是学生正在积极的思考、热烈的讨论、亲自动脑,亲自动手,不等不*,不会将问题结果完全寄托于老师的传授,而是在积极主动的探索。

  现代认知心理学家J。S布鲁纳说过:“探索是数学教学的生命线。”他所倡导的发现学习的教学模式不是把学习材料直接呈现给学生,而是只给一些提示性的线索,要学生自己通过积极主动的探索活动来学习知识,掌握策略,解决问题,这对培养学生解决问题的能力和创造性具有更加积极的意义。

  我想我的“教学风格(有些夸张)”还是有一定的理论依据的。三年的实践也已经证明了这一点。

  当然数学教学过程作为师生双边活动过程,学生的探索要依*教师的启发和引导。在教学过程中,我也从来没有放弃对于学生的指导,尤其在讲授新课时,我将教材组成一定的尝试层次,创造探索活动的环境和条件。让学生通过观察归纳,从特殊去探索一般,通过类比、联想,从旧知去探索新知,收到较好的效果。

  3.在课后作业,反馈练习中培养学生自学能力。

  课后作业和反馈练习、测试是检查学生学习效果的重要**。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学能力。在学完一节、一课、一单元后,让学生动手“列菜单”,归纳总结,要求学生尽量自己**完成,以便正确反馈教学效果,通过一系列的实践活动,把每个学生的学习积极性都调动起来,成为教学活动的参与者和**者。

  学生自学能力的培养不是*一朝一夕,要长期坚持的,三年来就是*着这扎扎实实的教学,扎扎实实的学习才使我所教的两个班级的学生在自学能力上得到了长足的进步。科学安排,课前、课堂、课后三者结合,留给学生充分的自学机会。真正把学生推向主动地位,使其变成学习的主人,我想这是每一位教育工作者所梦寐以求的结果吧。

  二、数学教育创新

  最早领教“教育创新”这个名词还是在刚刚步入一中时的新大学生的培训会上,现在回想起,值得思考的再也不是这个名词的字面含义,而是数学教育创新的着眼点是什么了。

  大家都知道中学数学的教学内容为初等数学的基础知识,这些基础知识源远流长。不可能再有什么知识层面的创新了。更不可能要求学生发明创造什么新的初等数学的结论。因此,我个人认为数学教育创新应该着眼于学生建构新的认知过程,用数学的语言就是——“认知建模”。而这过程的创新应该体现在以下三个方面:

  1.勤于思考:

  创新的前题是理解。我们知道,数学离不开概念,由概念又引伸出性质,这些性质往往以定理或公式呈现出来。对定理、公式少不了要进行逻辑推理论证,形成这些论证的理路需要思维过程。为此,我们首先必须让学生对学习的对象有所理解。因为数学知识的获得主要依赖紧张思维活动后的理解,只有透彻的理解才能溶入其认知结构。这就需要拼弃过去那种单*记往教师在课堂上传授的数学结论,然后套用这些结论或机械地模仿某种模式去解题的坏习惯。而要做到理解,就需要勤于思考。对知识和方法要多问几个为什么?如:为什么要形成这个概念?为什么要导出这个性质?这个性质、定理、公式有什么功能?如何应用?勤于思考的表现还在于对认知过程的不断反思、回顾,不断总结挫折的教训和成功的经验。避免墨守成规,勇于创新。

  2.善于**:

  学生在数学课堂中通过观察、感知学习的对象以后,要学会分析,要有自己的见解,不要人云亦云,要善于挖掘自己尚不清楚的问题,多角度,全方位地探究,并提出质疑。作为一个中学生,不见得也毋须什么问题都能自己解决。我们倡导的只是能对学习的对象提出多角度的问题,尤其是善于提出新颖的具有独特见解的问题。我认为会**是创新的一个重要标志。

高中数学教学总结11

  本学期我担任三年级二班和四年级一班的数学教学工作,在本学期,我能够在学期初按照学校的要求制定教学计划,并按时备课、上课、参加教研活动,积极参加生本教育的探究和实践,在工作中,我收获了很多,但在工作中也存在很多的不足之处,主要体现在以下几个方面:

  在备课和*时的教学中,体现了前置作业,但是设计不是很合理,有的与新授内容有一定的联系,但是不能很好的为新授内容做铺垫,因此,导致学生在课前的学习不够透彻,从而不能够很好的为新授内容服务,课堂效率不是很高。在的生本教育交流学习中,我们观看了两节生本教育的示范课,老师上课时让学生展示前置作业,是学生收集的一些图片资料,非常生动形象,我在考虑,前置作业的内容其实非常的丰富多样,它可以是图象,可以是声音,可以是文字,可以是**题等等,只要能为我们的新授内容服务,能为我们的新授做铺垫,都可以,只要我们在*时的教学中能够根据具体的情况进行分析和应用,就能起到非常好的效果。

  三年级的数学教材去年教过,相对来说比较熟悉,相对把握较好,四年级的数学教材是第一次教,有的地方研究不透彻,应及时的与同级部的老师进行集体备课。在观看生本教育的教学案例时,我发现老师的教学方法非常多,对教材的每一个小的细节都能观察到,通过研读透彻教材和课程规范,找准教材的重点、难点,把握好教材,才能选择好教学方法,提高课堂效率。在今后的教学中,要在研究教材和教参上多下功夫,在备课中和教学中遇到不懂的地方及时向**和同事请教,使自己传授给学生准确的知识。

  现在实行生本教育,对我们老师的要求更高了,感觉有时候自己的能力不够,对课堂上一些偶发的事件还不能够很好的应对,这也是制约我们数学课堂效率不高的因素之一。在教学案例中,老师对课堂的调控能力很强,包括对发言同学语言的指导等等,在我们的数学课堂上,有时候学生会想出很多连老师都想不到的解习题方法,这时候我们应该保持清醒的头脑,及时对学生的想法给予指导和评价。

  在两个班的教学中,小组合作起着非常重要的作用,有的小组学习很积极,上课发言也很积极,*时的学习中,学得比较好的学生可以带动不太好的学生,但有的小组相对做的不是很好,学习能力不强,合作意识也不是很强,对小组的评价只是发言积极有奖励,而忽视了合作学习,评价机制不够全面,应多与两位班**合作,讨论合理可行的评价机制,调动学生的学习积极性。

  在课堂教学中,我比较重视练习量,相对于其它的班级,练习量还是比较大的,学生对于学习的知识,掌握的也比较扎实,能够灵活运用。但是练**题的方式有很多种,要多研究既让学生感觉有心意又能达到练习目的的练**题。

  我自身还存在很多不足,我在*时的教学中要多在前置作业和小组合作方面多下功夫,要多学习有关生本教育和数学教学的相关理论知识,应用于自己的教学实践,多参与数学组和其他教研组的听、评课,取人之长,补己之短,多听取**和同事们对自己的教学提出的意见和建议,认真、踏实的干好自己的本职工作,在备课、上课上多下功夫,多于同级部的老师进行集体备课,多钻研教材,努力提高数学课堂的效率,让数学课真正成为学生实用和喜欢的课。

高中数学教学总结12

  一、一期来高中新课改所做的主要工作

  1、校长、主管教学的副校长、教导**及全体高一年级任课教师分别参加了由教育部、省教育厅及市教育局**的通识培训和学科培训。

  2、学校成立了以校长为组长的新课改**小组以及评价小组、选课指导小组,分别召开了专题研讨会,确定了学校新课改实施方案。

  3、学校已经制定了四个方案,分别是评价方案、教师培训方案、选课指导方案、新课程编排方案。

  4、学校严格按新课程计划开课,并将“研究性学习”作为一门课程单独开设,每周1课时,由专任教师任课。

  5、进行了广泛深入地宣传。一是多次在全校教职**上宣讲新课改的目的、意义、理念等;二是各教研组作为专题研讨新课程学科实施方法;三是教导处出了两期新课改知识专题教学简报;四是召开高一年级学生会,向学生宣传新课改的意义;五是向高一学生家长印发了《致家长的一封信》,让家长和社会了解新课改知识,争取家长的理解和**。

  6、第七周学校在高一年级**了一次新课改教学调研活动,进行了学生问卷**、听课、查教案、作业等。

  7、学校制作了《学生综合评价手册》和学生成长档案袋,其内容包括:学生综合素质评价方案,研究性学习,社会实践活动和社区活动,模块成绩等内容。

  8、学校开发了《湘潭地理》及《传统体育活动》两种校本教材,其中《湘潭地理》已出初稿。

  9、举行了新课改现场观摩会,实验教师**公开示范课,进行了新课改研讨会,做了经验交流。

  二、10年上学期新课改工作要点

  继续学习新课程、新课标、研究新课程、新课标,找出新旧教材、课标的区别,以备课组为单位形成书面材料报教导处。

  以备课组为单位,分学科**教师观看新教材培训资料包的光碟,以便把握新课程。

  加强集体备课,研究探讨新课程背景下的教学模式。要求由主备教师提前一周确定教学目标,选择教学方法,设计教学程序,确定教学内容,每人都是主备教师,每人设计一节课,交备课组审核,审核后提前两天交给全体组内成员,然后召集组员集体审稿,提出修改意见,主备教师按集体审稿意见修改审核后形成文本,任课教师对文本再次进行理解和补充,教师共用,课后教师记下课堂后记,下次教研时再讨论交流.通过上述设计、研讨、交流、修改、上课、课后反思、总结等几个环节,使我们的集体备课落到实处,同时也形成了校本教材,在此基础上安排高一学年骨干教师模块教学研讨课赛,实现研究新课改。

  为丰富和扩大学生的知识面,提高学生的综合素质,提高教师的专业化水*,打造名师品牌,有计划、有针对性地进行学法指导和学科的学术讲座,讲座内容可以是学生感兴趣的时事、社会科技、学科专题等。采取教师申报和学校确认相结合的形式确定讲学内容和讲座教师。准备成熟后下发选课申请单,根据选课人数的多少,排出讲课时间、地点。

  若条件成熟,在举办骨干教师模块教学研讨课赛的基础上,本着走出去、请进来的思路,拟邀请市教科院来校进行听评课的业务指导,时间安排在期中考试后进行.

  面对新课改,进行校本研究课题的研究工作。要加强课题研究的实效性,切实将课题研究成果转化为生产力,运用于我们的教育教学之中,切实解决教育教学所遇到的一些实际问题。每位教师本学期至少写一篇课题研究成果,可以是教学经验,也可以是教学案例等报教导处,从中评选出优秀论文发表在学校的专刊上或推荐到上级教研部门,实现优秀教育资源共享。

  在课题研究总结的基础上进行学科模块教学典型经验介绍,实现总结新课程,创新新课程。

  在实践中逐步修改完善课改的各项**等,以彰显十一中特色,同时各处、办、高一各备课组在安排高一所有活动时都要有活动材料,整理完后交教导处。建立课改管理*台。

  三、高中新课改的困惑

  高中新课改到底怎样改?我们面临着四大困惑:

  教育经费短缺

  学校财力紧张,因为学校所收取的学杂费充其量只能保证学校正常运转。可是,新课改工作的展开确实又需要相当数量的经费**,比如教师培训、必要的教育教学软硬件添置等,无一不需要一定量的花费,这部分钱从何而来呢?

  师资力量短缺

  “走班教学。”是课改体现成效的有效途径之一,但目前我校高中多数班级都在五十人以上,师资怎么解决?而新开的课程教师更始凤毛麟角,如新增的“通用技术”,目前没有配套的师资。同时,课改后将加强学生实验课程,缺少实验设备和教师。

  教师培训与“实”相违

  对于新课改,很多一线老师感到最困惑的是,课改的理念了解了不少,但太虚,而老师做的是具体而细微的工作,要研究一个个章节怎么上,要面对一个个不同的学生;个别老师甚至感慨不知如何上课。怎样培训教师也是一个新课题。

  学生管理难以操作

  分必修课和选修课后,教学模式应怎么确定?实行走班制后,如何管理学生也是亟待解决的问题。选课制带来的最大问题是,行政班班**失去对学生的监管。在选修课增加的过程中,教学班的形式越发显著,甚至超过行政班的作用,如何做好教学班与行政班的衔接,显得至关重要。

  四、建议

  1、上级主管部门**学校教导处外出考察课改搞得好的学校,以获得好的经验。

  2、**建立新课改管理软件的*台,以减少学校教导处的工作量。

  3、对课改搞得好的要有激励机制。

高中数学教学总结13

  先教学板块工作在蔡**的正确和英明的指导和**下,在各板块的兄弟姐妹的**和理解下,我们级部的教学工作得到顺利开展,但是,我仔细思考以后还是得到一个结论:教学板块的工作认真仔细回顾发现:教学板块的工作都没有做到满意。下面是具体的总结:

  1、新课改的推进。在新课改推行过程中,让一部分老师参与其中,应该是有些效果的,为下学期的课改工作打下一些基础。因为下期不能订资料,其中所有的导学案就要靠所以老师自己编写,下学期将强力推行新课改。我们板块做得不够的是:没有让所有的老师都参与其中,有的老师对新课改还没有感觉。

  2、任务布置的进行。有关教学板块的常规工作,学校教务处、教科室布置得任务都能够及时告知给位组长和老师,我们的执行力还算行,工作中还是比较注重细节,使我们的工作能够顺利开展。遗憾的是我们的个别老师没有真正做到。如:有的老师晚自习到办公室,没有在班上坚守自己的岗位;有的老师在完善课时候或自习课的时候,没有坚实岗位;英语学科的外教课,有的英语老师没有按规定在外教课堂随堂听课。

  3、对备课组活动的明确要求,但是紧盯不够,下期将对这块工作加强和细致。如:要求各组在备课活动过程中认真练习相应的试题,其目的就是让各位老师了解课程设置的重难点,考试方向等。

  4、课改研究课的安排,都能够正常开展,只是我们级部在上报的时候,有时没有按时、及时上报教科室。各学科的导学案有时上传不够规范。今后改进。

  5、青年教师的周总结和计划,青年教师的撰文,有要求但是没有做好。总结和计划在13周之后基本就没有再交,这是我们两个没有紧盯的结果。教师撰文质量不高,不少是在网上原文下载。

  6、要求各位老师定时、定人、定地点听课。只有物理和数学两个学科做得相对较好,其他学科是否在做,是否做得好,我们的监管也是做大不好。

  7、教学结对工作。在开学的时候,我们召开了一次上期的结对总结会,不过我们的后期的督促和指导工作没有落到实处。

  最后谈一点个人的教学方面的问题。因为工作量较大,和学生的交流沟通较少,对自己的反思和总结不够,我感谢蔡**给我的指导,周**给我的帮助,级部给位老师给我个人的帮助和**,年青教师中小蓉、小姜给我极大的**。今后我会努力的、认真的工作回报大家对我的关心。

  本学期我认真学习,从各方面严格要求自己,用心向老教师请教,结合本校的实际条件和学生的实际状况,勤勤恳恳,兢兢业业,使教学工作有计划,有**,有步骤地开展。为使今后的工作取得更大的进步,现对本学期教学工作作出总结,期望能发扬优点克服不足总结检验教训继往**,以促进教学工作更上一层楼、总结如下:

  一、努力提高课的质量,追求复习的最大效益。

  1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有机结合,既体现了学期教学的连贯性,又体现了阶段教学的灵活性。

  2、准确定位复习难度,提高课堂复习的针对性。我们把临界生这个群体作为高考复习的主要对象,根据临界生的知识结构,潜力层次来设计课堂教学,不片面地追求"高,难,尖",而是在夯实基础的前提下,逐步提高潜力要求,从而突出重点,突破难点。

  3、不断优化课堂结构,力促课堂质量的有效性。首先,针对复习课特点,明确复习思路,构建了二轮复习"四合一"的课堂模式:潜力训练+试卷讲评+整理消化+纠错巩固。潜力训练做到在一轮复习的基础上,排查出学生的考点缺陷,有针对性地进行强化训练;试卷讲评做到在错误率统计和错误原因分析的基础上进行讲评,讲评的对象明确定位为中转优学生,评讲效果的衡量标准就是看中转优学生有没有真正搞懂;整理消化首先确保各学科当堂消化的时间;错误率较高的题目在必须的时间长度内,以变形的形式进行纠错巩固训练,同时在周练中予以体现。

  二、让学生切实做好题,发挥训练的最大功能。

  1、实行"下水上岸"制,提高练习质量。"下水"是为了"上岸",教师做题是为了选题。为此,本人对给学生做的题目自己先过一遍,加强对选题的工作,练习材料没有照搬现成资料,同时整个年段的题目是备课组群众研讨而成;要先改造,后使用,力求做到选题精当,贴合学情。

  2、有效**训练过程,确保训练效度、训练上个性重视训练的计划性,明确每周训练计划、认真统计分析,对于重点学生更是面批到位、指导学生进行自我纠错,并定期进行纠错训练、此外,对考试这一环节,严格考试流程,狠抓考风考纪,重视考试心理的调适,答题规范化的指导和应试技能的培养,努力消除非智力因素失分。及时认真地做好每次考试的质量分析,并使分析结果迅速,直接地指导后面的复习工作。

  3、强化基础过关,实施分层推进、针对学生基础相对薄弱的现状,实施基础题过关的方法,在夯实基础的前提下,实验班适当提升训练难度,同时实行必做题和选做题的分档训练。这一举措对学生成绩的提高取得了良好的效果。

  还有很多做得不够的地方,我必须持续谦虚谨慎,戒骄戒躁的作风,在今后的工作中扬长避短,不断进步,不辜负**和家长们对我的信任,在来年再创佳绩。

高中数学教学总结14

  幸福,对于当下急功近利、欲壑难填的国人来说,是一个**的话题,也是一件可遇而不可求的奢侈品。人们都说,一千个读者就有一千个哈姆雷特,那么,是不是13亿*人就有13亿种对幸福的解读呢?答案不得而知,但是,作为一个从教7年的年轻教师,一个对生活要求不算太高的年轻教师,我确确实实地感受到了作为一名教师的幸福,这其中虽然伴随着成长的跌跌撞撞,但是我一直坚信,我能成为一名因我的存在而让学生感到幸福,同时我也乐在其中的老师,因为彼岸花开,希望永在。

  幸福来自彼此的喜欢。

  20__年秋天,我踏进了亚林一中的校门。我认真备课,我虚心求教。只要有时间我就去听数学组其他老师的课,认真做好笔记,回寝室后我就认真钻研反思,我与前辈的差距在哪,我如何在最短的时间里成长。很快,我的勤奋务实有了回报。学生看见我,老远就跑过来,问这问那,课堂上学生的小眼睛都瞪得圆圆的,自然成绩错不了。有一个叫张浩的学生的妈妈找到我,说张浩近一段时间特别愿意学数学,而她因一些小事和孩子闹得不愉快,问我能不能帮她劝劝孩子。这是我始料未及的,但我欣然答应了。结果是皆大欢喜。所以,这一年的教学经历告诉我,要想成为一名幸福的老师,就要做到既能走到学生身边,又要走进学生的心里,彼此喜欢,彼此不设防,幸福才能

  悄然来临。

  幸福来自彼此的尊重。

  学生尊重老师,理所当然。其实,老师尊重学生也是理当如此。20__年,因为我教学成绩突出,我被调到高一年组承担文科重点班的教学任务。说起这届学生,就不得不说一个叫张**的孩子,他在20__年的高考中取得了数学141的高分,成为松林管局文科状元。对于刚接触的这个年组第一却选择文科的优秀学生,我要求自己一定要用自己的专业水*赢得他的尊重。我认真备课,做大量的高考题,为他量身选择能激发他的学习热情和动力的习题,哪怕是在我高三每周42节课的时候。如今已*政法大学大三的他仍不时地给我发短信打电话。不仅是张**如此,那届学生见我都会很亲切的喊我一声“晓秋老师!”所以,这三年我成长最快,虽然是被学生撵着成长起来的。我的总结是,不要小瞧学生的能力,要想成为学生的良师益友,就要学会彼此尊重。

  幸福来自彼此的认同。

  我一直认为林区的家长易于沟通,只要你是一个认真负责的老师,家长就会认可你。20__年春节,邵明洋的爸爸问了好多人之后,终于打通了我新换的电话,就是想表达一下感激之情。他说,孩子是花了8000元钱上的高中,初中数学倒数,如今成了数学成绩年组第一的优等生,他很感激。放下电话,我的心中溢满了幸福感。一个老师的价值能得到家长的认可,那他就是一个幸福的老师,我把这样的认可当成我最高的荣誉,千金不换。

  人往往因为生命的不完美而感到有所缺憾,也因此感慨幸福的难得。就如张爱玲说,生命是一袭华丽的袍子,上面爬满了蚤子。不要苛求幸福,其实它就在不远处,也许就在彼岸,在你思维的转角处。感谢让我成长,让我感受到作为一名教师的幸福的学生、家长、同仁。

  看,彼岸花开,幸福常在。

高中数学教学总结15

  高中数学组在xxxx年的工作在学校工作思路的指导下,认真贯彻落实课改精神,以人为本,以促进学生发展、教师成长为目的。以教法探索为重点,努力提高课堂效益和教学质量;不断总结经验,发挥优势,改进不足,集全组教师的创造力,努力使高中数学教研组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。

  在工作中,我们充分发挥一个核心的表率作用,狠抓两条线的深入研究,积极促进三个团队主动参与和建设,从而使我组的研究工作**、高效地开展。

  一个核心:是指我组内具有良好思想素质、过硬的业务能力、踏实的工作作风和不断进取精神的教学骨干们。充分发挥核心成员的聪明才智,在做好本职工作的前提下,依据他们的特长,或上示范课,或开讲座,或主持集体备课,带头参与教学理论和具体教学实际的研究,使核心成员们的各类资源做到组内共享。

  二条线:是指对教育教学的理论学习研究和具体课堂教学的研究两个方面。要不断提高教学质量,关键在于要有一批思想新、能力强,具有较高理论修养的教学队伍,因此,要打造一批科研型的教师,从而实现兴校,强校。

  三个团队:是指年级备课组、科研课题组和师徒组合群。在教研组的**计划下,各年级备课组均有自己的教学计划,有健全的集体备课**,每次活动均做到四定,即:定时间、定地点、定内容、定主讲人(上课人),在*时的教学活动中,督促教师做到认真有效。

  在xxxx年的工作中,我们重点住了以下工作:

  1、规范数学教学常规管理,认真备课、上课、布置批改作业、辅导学生、**数学学科的日常课堂教学质量调研。

  2、**好隔周一次的教研组活动(周四下午)。围绕理论学习、课题研究,集体备课、公开课等形式进行,为大家提供一个学习交流的*台,使组内形成良好的教研学习风气,提高数学教学质量。

  3、加强青年教师的培养,促进中老年教师成名。鼓励他们参加各级各类优质课、公开课竞赛,积极撰写论文。针对教研组的实际情况,本学年我们公开课放在了年轻教师身上。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除