七年级数学应用题带答案3篇
七年级数学应用题带答案1
【题目1】B处的兔子和A处的狗相距56米。兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?
【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米
【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的`路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。求AB两地相距多少千米?
【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。所以火车长30000-29400=600米。
【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD来表示。A+B=1/4,B+C=1/5。2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
【题目5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲乙两个码头同时出发向上*使。两船的静水速度相同且始终保持不变。客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米。客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇。求水流的速度。
【解答】船静水每小时行5÷10/60=30千米,客船从返回到与货船相遇的时间是50÷(30×2)=5/6小时,由于这个时候客船也追**物品,所以客船行逆水行20千米就用了5/6小时,那么逆水每小时行20÷5/6=24千米,水流速度就是每小时30-24=6千米。
七年级数学应用题带答案2
【题目1】B处的兔子和A处的狗相距56米。兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?
【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米
【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的`路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。求AB两地相距多少千米?
【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。所以火车长30000-29400=600米。
【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD来表示。A+B=1/4,B+C=1/5。2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
【题目5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲乙两个码头同时出发向上*使。两船的静水速度相同且始终保持不变。客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米。客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇。求水流的速度。
【解答】船静水每小时行5÷10/60=30千米,客船从返回到与货船相遇的时间是50÷(30×2)=5/6小时,由于这个时候客船也追**物品,所以客船行逆水行20千米就用了5/6小时,那么逆水每小时行20÷5/6=24千米,水流速度就是每小时30-24=6千米。
七年级数学应用题带答案3
【题目1】B处的兔子和A处的狗相距56米。兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?
【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米
【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。求AB两地相距多少千米?
【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。所以火车长30000-29400=600米。
【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD来表示。A+B=1/4,B+C=1/5。2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
【题目5】一条河上有甲、乙两个码头,甲在乙的'上游50千米处。客船和货船分别从甲乙两个码头同时出发向上*使。两船的静水速度相同且始终保持不变。客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米。客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇。求水流的速度。
【解答】船静水每小时行5÷10/60=30千米,客船从返回到与货船相遇的时间是50÷(30×2)=5/6小时,由于这个时候客船也追**物品,所以客船行逆水行20千米就用了5/6小时,那么逆水每小时行20÷5/6=24千米,水流速度就是每小时30-24=6千米。
七年级数学应用题带答案3篇扩展阅读
七年级数学应用题带答案3篇(扩展1)
——2年级数学应用题及答案60篇
2年级数学应用题及答案1
1.某玻璃厂要委托运输公司包运2000块玻璃,每块运费为0.4元,如损坏一块,需赔偿损损失费7元,结果运输公司得到711.2元,问损坏玻璃多少块?
200-711.2=88.8(元)
7+0.4=7.4(元)
88.8÷7.4=12(块)
综合算式:(200-711.2)÷(7+0.4)=12(块)
2.一间教室的长是9米,宽是7米,用边长0.6米的瓦砖铺地面,共要多少块瓦砖?
9 x 7÷(0.6 x 0.6)
=63÷0.36
=175(块)
3.某市出租车2千米起步,起步价为3元,超过2千米,每千米收费1.2元,赵阿姨从家乘出租车去公园,下车时付了10.2元,她家离公园有多远?
10.2 –3=7.2(元)
7.2÷1.2=6(千米)
2+6=8(千米)
综合算式:(10.2 –3)÷1.2+2=8(千米)
4.某工程队承包一条自来水管道的安装任务,原计每**装0.48千米,35天完成.实际每**装0.6千米,实际装了几天?
0.48×35÷0.6=28(天)
5、一个班有22个男生,*均身高140.5厘米;有18个女生,*均身高142.5厘米。全班同学的*均身高是多少厘米?
(140.5×22+142.5×18)÷(22+18)
=(3091+2565)÷40
=141.4(厘米)
6、敬老院里有老奶奶10人,*均年龄80.5岁;有老爷爷12人,*均年龄73.5岁。求全院老人的*均年龄.(得数保留一位小数)
(80.5×10+73.5×12)÷(10+12)
=(805+882) ÷22
≈76.7(岁)
七年级数学应用题带答案3篇(扩展2)
——2年级数学应用题及答案
2年级数学应用题及答案1
1.某玻璃厂要委托运输公司包运2000块玻璃,每块运费为0.4元,如损坏一块,需赔偿损损失费7元,结果运输公司得到711.2元,问损坏玻璃多少块?
200-711.2=88.8(元)
7+0.4=7.4(元)
88.8÷7.4=12(块)
综合算式:(200-711.2)÷(7+0.4)=12(块)
2.一间教室的长是9米,宽是7米,用边长0.6米的瓦砖铺地面,共要多少块瓦砖?
9 x 7÷(0.6 x 0.6)
=63÷0.36
=175(块)
3.某市出租车2千米起步,起步价为3元,超过2千米,每千米收费1.2元,赵阿姨从家乘出租车去公园,下车时付了10.2元,她家离公园有多远?
10.2 –3=7.2(元)
7.2÷1.2=6(千米)
2+6=8(千米)
综合算式:(10.2 –3)÷1.2+2=8(千米)
4.某工程队承包一条自来水管道的安装任务,原计每**装0.48千米,35天完成.实际每**装0.6千米,实际装了几天?
0.48×35÷0.6=28(天)
5、一个班有22个男生,*均身高140.5厘米;有18个女生,*均身高142.5厘米。全班同学的*均身高是多少厘米?
(140.5×22+142.5×18)÷(22+18)
=(3091+2565)÷40
=141.4(厘米)
6、敬老院里有老奶奶10人,*均年龄80.5岁;有老爷爷12人,*均年龄73.5岁。求全院老人的*均年龄.(得数保留一位小数)
(80.5×10+73.5×12)÷(10+12)
=(805+882) ÷22
≈76.7(岁)
七年级数学应用题带答案3篇(扩展3)
——3年级数学应用题
3年级数学应用题1
1.一个果园里栽了125棵苹果树,梨树的棵数比苹果树的4倍少20棵。这个果园一共栽了多少棵树?
算式:
答:这个果园一共栽了棵树。
2.一段路长324米,已经修了240米,剩下的计划4小时修完。*均每小时修多少米?
算式:
答:*均每小时修米。
3. 红光印刷厂装订一批日记本,前三天共装订了960本,后16天*均每天装订420本。这批日记本共有多少本?
算式:
答:这批日记本共有本。
4.一个打字员4分钟输入200个汉字。照这样计算,输入3000个汉字需要多少分钟?
算式:
答:输入3000个汉字需要分钟。
5. 3袋面粉共重75千克,8袋面粉重多少千克?
算式:
答:8袋面粉重千克。
七年级数学应用题带答案3篇(扩展4)
——小学三年级数学乘法应用题3篇
小学三年级数学乘法应用题1
1、小芳与同学去游乐场玩,激流勇进船票价20元,8个同学需要多少钱?
2、水果店运来6箱苹果,每箱40千克,一共运来苹果多少千克?
3、学校走廊每个窗台摆3盆花,有30个窗台,一共可以摆放多少盆花?
4、儿童脚踏车每辆的价钱是200元,幼儿园买了4辆,一共用了多少元?
5、每瓶矿泉水2元,买40瓶需要多少钱?
6、一台电风扇的价钱是200元,买3台电风扇用多少元?
7、校园里栽了30棵杨树,松树的棵数是杨树的2倍,松树一共栽了多少棵?
8、水果店运来3箱桔子,每箱20千克,又运来苹果98千克,一共运来水果多少千克?
9、一盒胶卷能照40张相片,2盒胶卷能照多少张相片?
10、熊猫的体重是80千克,一头牛的体重是一只熊猫的3倍,一头牛有多重?
小学三年级数学乘法应用题2
1、小海有178张邮票,小军的邮票是小海的2倍,小军有多少张邮票?
2、明明每分钟大约走98米,他从家到学校大约要走7分钟,他家到学校大约有多远?
3、养殖场有鸡330中人,鸭的只数是鸡的4倍,养殖场有鸭多少只?
4、老师带29人去动物园,门票是9元,一共要多少元?
5、同学们为迎运动会做花束,一共有75人,每人做3束,一共做了多少束花?
6、运动会看台分为4个区,每个区有907个座位,看台上最多可以坐多少人?
7、小红有弹力球45个,小明的是小红的4倍,小明有弹力球多少个?
8、明明的体重是35千克,爸爸的体重比明明的2倍多5千克,爸爸的'体重是多少千克?
9、学校给6个年级买跳绳,如果每个年级分154根,一共需要买多少根跳绳?
10、小红有197张邮票,小刚的邮票是小红的2倍,小刚有多少张邮票?
小学三年级数学乘法应用题3
1、小芳与同学去游乐场玩,激流勇进船票价20元,8个同学需要多少钱?
2、水果店运来6箱苹果,每箱40千克,一共运来苹果多少千克?
3、学校走廊每个窗台摆3盆花,有30个窗台,一共可以摆放多少盆花?
4、儿童脚踏车每辆的价钱是200元,幼儿园买了4辆,一共用了多少元?
5、每瓶矿泉水2元,买40瓶需要多少钱?
6、一台电风扇的价钱是200元,买3台电风扇用多少元?
7、校园里栽了30棵杨树,松树的棵数是杨树的2倍,松树一共栽了多少棵?
8、水果店运来3箱桔子,每箱20千克,又运来苹果98千克,一共运来水果多少千克?
9、一盒胶卷能照40张相片,2盒胶卷能照多少张相片?
10、熊猫的体重是80千克,一头牛的体重是一只熊猫的3倍,一头牛有多重?
七年级数学应用题带答案3篇(扩展5)
——小学五年级数学应用题3篇
小学五年级数学应用题1
1、六年级同学收集了180个易拉罐,其中的1/3是一班收集的,2/5是二班收集的。两个班各收集多少个?(60、72)
2、小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的1/2。小新体重多少千克?(41)
3、六年级三个班学生帮助图书室修补图书。一班修补了54本,二班修补的本数是一班的5/6,三班修补的是二班的4/3。三班修补图书多少本?(60)
4、小丽比小兰多12张彩色画片,这个数目正好相当于小兰画片张数的3/10。小兰有多少张彩色画片?小丽有多少张?(40、52)
5、六年级有学生111人,相当于五年级学生人数的3/4。五年级和六年级一共有多少人?(259)
6、小刚家买来一袋面粉,吃了15千克,正好是这袋面粉的3/4。这袋面粉还剩多少千克?(20)
7、光明小学美术组有30人,生物组的人数是美术组的1/3,航模组的人数是生物组的4/5。航模组有多少人?(8)
8、某饲养场养了2400只鹅,鹅的只数是鸭的3/4,鸭的只数是鸡的4/5,饲养场养了多少只鸡?(4000)
9.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少(40)
小学五年级数学应用题2
1.火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。甲乙两城相距多少千米?
2.甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?
3.小方从家到学校,每分钟走60米,需要14分钟,如果她每分钟多走10米,需要多少分钟?
4.一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架飞机每小时行多少千米?
5.某工地需水泥240吨,用5辆汽车来运,每辆汽车每次运3吨,需运多少次才能运完?
6.甲乙两地相距750千米,一辆汽车以每小时50千米的速度行驶,多少小时可以到达乙地?
7.甲乙两地相距560千米,一辆汽车从甲地开往乙地,每小时行48千米,另一辆汽车从乙地开往甲地,每小时行32千米.两车从两地相对开出5小时后,两车相距多少千米?
8.一段公路原计划20天修完.实际每天比原计划多修45米,提前5天完成任务.原计划每天修路多少米?
9.这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间
10.石家庄到承德的公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果*均每小时行驶78千米,上午8时出发,那么几时可以到达
小学五年级数学应用题3
1.化肥厂计划生产7200吨化肥,已经生产了4个月,*均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
2.塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
3.*上午4小时生产了252个零件,照这样的速度下午又工作3小时。*这一天共生产零件多少件?
4.水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
5.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
6.甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
7、某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
七年级数学应用题带答案3篇(扩展6)
——一年级数学上册应用题3篇
一年级数学上册应用题1
1.一年级(2)班图书角原来有图书25本,同学们又捐献了故事书9本,画册8本。现在图书角共有图书()本。
2.上衣:50元裤子:30元鞋:19元
(1)买一条裤子和一双鞋共()钱。
(2)小华想买一件上衣、一条裤子和一双鞋,带100元,够吗?
3.排练舞蹈,需要女生30人,男生25人。一共需要学生多少人?
4.(1)活动课上打乒乓球的有8人,做操的有36人。打乒乓球和做操的同学共有多少人?
(2)活动课上有26名同学参加体育活动,40名同学参加文艺活动。参加这两种活动的共有多少人?
5.我们班有46人,男生有20人,女生有多少人?
6.(1)一辆客车上有48个座位,乘客上车后还剩7个空座位。上来乘客多少人?
(2)一辆客车上有48个座位,上来30名乘客。还剩几个空位?
7.(1)一本书有42页,小华已经看了7页。还剩多少页没有看?
(2)一本书有42页,小华看了一些后还剩30页没看。小华看了多少页?
8.(1)图书室有连环画84本,已经借出9本。还剩多少本?
(2)图书室有连环画84本,一班借走9本,二班借走8本。还剩多少本?
9.书包:49元水彩笔:10元墨水:3元
(1)书包比水彩笔贵多少钱?
(2)墨水比水彩笔便宜多少钱?
(3)你还能提出什么问题?
10.兔妈妈:我收了35个萝卜。兔宝宝:我收了30个萝卜。
(1)兔妈妈比兔宝宝多收了几个萝卜?
(2)兔宝宝比兔妈妈少收了几个萝卜?
11.母鸡:35只小鸡:50只
(1)小鸡比母鸡多多少只?
(2)母鸡比小鸡少多少只?
12.大客车:30辆中巴:45辆小轿车:40辆
(1)小轿车比大客车多多少辆?
(2)中巴比大客车多多少辆?
(3)你还能提出什么问题?
13.拿50元去买车票,找给我20元。买车票花了多少钱?
14.跳绳比赛,小明跳了20下,小东跳了30下,小丽跳了46下。
(1)小明比小东少跳几下?
(2)小丽比小东多跳几下?
(3)你还能提出什么问题?
15.同学们植树,一班植树20棵,二班植树35棵,三班植树40棵。
(1)二班比一班多植树多少棵?
(2)一班比三班少植树多少棵?
(3)三个班共植树多少棵?
16.小华收集了多少个废塑料瓶?
小刚:我收集了50个废塑料瓶。
小华:我再收集9个就和你同样多。
17.游泳:25人跑步:30人跳远:20人
(1)参加游泳的同学比参加跑步的少几人?
(2)跑步的同学比跳远的多几人?
(3)你还能提出什么问题?
18.爸爸:我今年32岁。儿子:我今年8岁。
10年后父亲比儿子大多少岁?
19.购物。
本:1元水彩笔:13元笔:1元3角闹钟:29元
(1)买一盒水彩笔和一个闹钟,一共需要多少钱?
(2)小红买一个文具盒,付出5元,售货员找回1元5角,一个文具盒多少钱?
(3)买一只笔,可以怎样付款?
(4)笔比本贵多少钱?
(5)小明带了20元钱,能买哪两样东西?还剩多少钱?
(6)你还能提出什么数学问题?写出来,并解答。
20.一共有15个苹果,外面有8个,篮子里有几个?
21、同学们要做10个灯笼,已做好8个,还要做多少个?
22、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?
23、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?
24、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?
25、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?
26、小强家有10个苹果,吃了7个,还有多少个?
27、汽车总站有13辆汽车,开走了3辆,还有几辆?
28、小朋友做剪纸,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?
29、马场上有9匹马,又来了5匹,现在马场上有多少匹?
30、商店有15把扇,卖去5把,现在有多少把?
31、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?
32、小青两次画了17个,第一次画了9个,第二次画了多少个?
33、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?
34、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?
35、家有11棵白菜,吃了5棵,还有几棵?
36、一条马路两旁各种上48棵树,一共种树多少棵?
37、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?
38、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?
39、学校体育室有6个足球,又买来20个,现在有多少个?
40、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅?
41、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?
42、图书室里有20个**学,有10个男同学,男同学比**学少多少个?
43、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?
44、学校有10个足球,16个篮球,足球比篮球少多少个?
45、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?
46、有两层书架,第一层有16本书,第二层比第一层多8本,第二层有多少本?
47、妈妈买苹果6个,买梨子比苹果多4个,买梨子多少个?
48、四年级有84人去郊游,五年级比四年级多去8人,五年级有多少人去郊游?
49、小合唱队有28个**学,男同学比**学少4个,男同学有几个?
50、小华家养32只白羊,黑羊比白羊少12只,养黑羊多少只?
51、同学们参加劳动,摘黄瓜40筐,摘的白瓜比黄瓜少18筐,摘白瓜多少筐?
52、小明拍皮球,第一次拍35下,第二次比第一次少拍7下,第二次拍多少下?
53、学校买回笔37盒,彩色粉笔8盒,买回粉笔共多少盒?
54、学校买回白色、彩色粉笔共45盒,其中彩色粉笔8盒,买回笔多少盒?
55、学校买回笔37盒,彩色粉笔8盒,彩色粉笔比笔少多少盒?
56、学校买回彩色粉笔8盒,买回的笔比彩色粉笔多29盒,买回笔多少盒?
一年级数学上册应用题2
1、 同学们要做20个灯笼,已做好9个,还要做多少个?
2、从花上飞走了9只蝴蝶,又飞走了5只,两次飞走了多少只?
3、飞机场上有17架飞机,飞走了3架,现在机场上有飞机多少架?
4、小苹种9盆红花,又种了同样多的黄花,两种花共多少盆?
5、学校原有8瓶胶水,又买回4瓶,现在有多少瓶?
6、小强家有17个苹果,吃了7个,还有多少个?
7、汽车总站有20辆汽车,开走了3辆,还有几辆?
8、小朋友做剪纸 ,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?
9、马场上有9匹马,又来了5匹,现在马场上有多少匹?
10、商店有15把扇,卖去5把,现在有多少把?
11、学校有兰花和菊花共16盆,兰花有6盆,菊花有几盆?
12、小青两次画了9个 ,第一次画了5个,第二次画了多少个?
13、小红家有苹果和梨子共18个,苹果有9个,梨子有多少个?
14、学校要把20箱文具送给山区小学,已送去10箱,还要送几箱?
15、家有15棵白菜,吃了5棵,还有几棵?
16、一条马路两旁各种上9棵树,一共种树多少棵?
17、从车场开走9辆汽车,还剩5辆,车场原来有多少汽车?
18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?
19、学校体育室有8个足球 ,又买来7个,现在有多少个?
20、学雷锋小组上午修了8张椅,下午修了12张,一天修了多少张椅?
21、明明上午算了8道数学题,下午算了12道,下午比上午多算多少道题?
22、图书室里有10个**学,有8个男同学,男同学比**学少多少个?
23、动物园里有大猴8只,有小猴10只,小猴比大猴多多少只?
24、学校有6个足球,10个篮球,足球比篮球少多少个?
25、花园里有兰花6盆,菊花8盆,兰花再种多少盆就和菊花同样多?
26、妈妈买红扣子8个,白扣子6个,黑扣子4个。
(1)红扣子比白扣子多多少个?
(2)黑扣子比白扣子少多少个?
27、小华做了14个信封,小亮比小华多做6个,小亮做了多少个?
28、有两层书架,第一层有12本书,第二层比第一层多6本,第二层有多少本?
29、妈妈买苹果10个,买梨子比苹果多4个,买梨子多少个?
30、饲养组有10只公鸡,母鸡比公鸡多8只,有母鸡多少只?
31、四年级有16人去郊游,五年级比四年级多去4人,五年级有多少人去郊游?
32、小合唱队有19个**学,男同学比**学少4个,男同学有几个?
33、小华家养16只白羊,黑羊比白羊少2只,养黑羊多少只?
34、同学们参加劳动,摘黄瓜18筐,摘的白瓜比黄瓜少1筐,摘白瓜多少筐?
35、小明拍皮球,第一次拍15下,第二次比第一次少拍1下,第二次拍多少下?
36、小英做红星9个,做的黄星比红星少3个,做黄星多少个?
37、学校买回黄色粉笔9盒,红色粉笔8盒 ,买回粉笔共多少盒?
38、学校买回白色、红色粉笔共19盒,其中红色粉笔10盒,买回黄色粉笔多少盒?
39、学校买回黄色粉笔9盒,红色粉笔5盒,红色粉笔比黄色粉笔少多少盒?
40、学校买回红色粉笔18盒,买回的黄色粉笔比红色粉笔多2盒,买回黄色粉笔多少盒?
41、学校买回黄色粉笔20盒,买回的红色粉笔比黄色粉笔少10盒,买回红色粉笔多少盒?
42、果园里有荔枝树10棵,龙眼树9棵。
(1)两种树一共有多少棵?
(2)龙眼树比荔枝树少多少棵?
一年级数学上册应用题3
1.一年级(2)班图书角原来有图书25本,同学们又捐献了故事书9本,画册8本。现在图书角共有图书()本。
2.上衣:50元裤子:30元鞋:19元
(1)买一条裤子和一双鞋共()钱。
(2)小华想买一件上衣、一条裤子和一双鞋,带100元,够吗?
3.排练舞蹈,需要女生30人,男生25人。一共需要学生多少人?
4.(1)活动课上打乒乓球的有8人,做操的有36人。打乒乓球和做操的同学共有多少人?
(2)活动课上有26名同学参加体育活动,40名同学参加文艺活动。参加这两种活动的共有多少人?
5.我们班有46人,男生有20人,女生有多少人?
6.(1)一辆客车上有48个座位,乘客上车后还剩7个空座位。上来乘客多少人?
(2)一辆客车上有48个座位,上来30名乘客。还剩几个空位?
7.(1)一本书有42页,小华已经看了7页。还剩多少页没有看?
(2)一本书有42页,小华看了一些后还剩30页没看。小华看了多少页?
8.(1)图书室有连环画84本,已经借出9本。还剩多少本?
(2)图书室有连环画84本,一班借走9本,二班借走8本。还剩多少本?
9.书包:49元水彩笔:10元墨水:3元
(1)书包比水彩笔贵多少钱?
(2)墨水比水彩笔便宜多少钱?
(3)你还能提出什么问题?
10.兔妈妈:我收了35个萝卜。兔宝宝:我收了30个萝卜。
(1)兔妈妈比兔宝宝多收了几个萝卜?
(2)兔宝宝比兔妈妈少收了几个萝卜?
11.母鸡:35只小鸡:50只
(1)小鸡比母鸡多多少只?
(2)母鸡比小鸡少多少只?
12.大客车:30辆中巴:45辆小轿车:40辆
(1)小轿车比大客车多多少辆?
(2)中巴比大客车多多少辆?
(3)你还能提出什么问题?
13.拿50元去买车票,找给我20元。买车票花了多少钱?
14.跳绳比赛,小明跳了20下,小东跳了30下,小丽跳了46下。
(1)小明比小东少跳几下?
(2)小丽比小东多跳几下?
(3)你还能提出什么问题?
15.同学们植树,一班植树20棵,二班植树35棵,三班植树40棵。
(1)二班比一班多植树多少棵?
(2)一班比三班少植树多少棵?
(3)三个班共植树多少棵?
16.小华收集了多少个废塑料瓶?
小刚:我收集了50个废塑料瓶。
小华:我再收集9个就和你同样多。
17.游泳:25人跑步:30人跳远:20人
(1)参加游泳的同学比参加跑步的.少几人?
(2)跑步的同学比跳远的多几人?
(3)你还能提出什么问题?
18.爸爸:我今年32岁。儿子:我今年8岁。
10年后父亲比儿子大多少岁?
19.购物。
本:1元水彩笔:13元笔:1元3角闹钟:29元
(1)买一盒水彩笔和一个闹钟,一共需要多少钱?
(2)小红买一个文具盒,付出5元,售货员找回1元5角,一个文具盒多少钱?
(3)买一只笔,可以怎样付款?
(4)笔比本贵多少钱?
(5)小明带了20元钱,能买哪两样东西?还剩多少钱?
(6)你还能提出什么数学问题?写出来,并解答。
20.一共有15个苹果,外面有8个,篮子里有几个?
21、同学们要做10个灯笼,已做好8个,还要做多少个?
22、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?
23、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?
24、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?
25、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?
26、小强家有10个苹果,吃了7个,还有多少个?
27、汽车总站有13辆汽车,开走了3辆,还有几辆?
28、小朋友做剪纸,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?
29、马场上有9匹马,又来了5匹,现在马场上有多少匹?
30、商店有15把扇,卖去5把,现在有多少把?
31、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?
32、小青两次画了17个,第一次画了9个,第二次画了多少个?
33、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?
34、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?
35、家有11棵白菜,吃了5棵,还有几棵?
36、一条马路两旁各种上48棵树,一共种树多少棵?
37、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?
38、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?
39、学校体育室有6个足球,又买来20个,现在有多少个?
40、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅?
41、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?
42、图书室里有20个**学,有10个男同学,男同学比**学少多少个?
43、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?
44、学校有10个足球,16个篮球,足球比篮球少多少个?
45、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?
46、有两层书架,第一层有16本书,第二层比第一层多8本,第二层有多少本?
47、妈妈买苹果6个,买梨子比苹果多4个,买梨子多少个?
48、四年级有84人去郊游,五年级比四年级多去8人,五年级有多少人去郊游?
49、小合唱队有28个**学,男同学比**学少4个,男同学有几个?
50、小华家养32只白羊,黑羊比白羊少12只,养黑羊多少只?
51、同学们参加劳动,摘黄瓜40筐,摘的白瓜比黄瓜少18筐,摘白瓜多少筐?
52、小明拍皮球,第一次拍35下,第二次比第一次少拍7下,第二次拍多少下?
53、学校买回笔37盒,彩色粉笔8盒,买回粉笔共多少盒?
54、学校买回白色、彩色粉笔共45盒,其中彩色粉笔8盒,买回笔多少盒?
55、学校买回笔37盒,彩色粉笔8盒,彩色粉笔比笔少多少盒?
56、学校买回彩色粉笔8盒,买回的笔比彩色粉笔多29盒,买回笔多少盒?
七年级数学应用题带答案3篇(扩展7)
——一年级数学思维训练应用题3篇
一年级数学思维训练应用题1
1、日落西山晚霞红,我把小鸡赶进笼。一半小鸡进了笼,还有5只在捉虫,另外5只围着我,叽叽喳喳闹哄哄。小朋友们算一算,多少小鸡进了笼?
2、一只猫吃掉一条鱼需要1分钟。照这样,100只猫同时吃掉100条鱼需要几分钟?
3、5个小朋友同时吃5个苹果需要5分钟,照这样,10个小朋友同时吃10个苹果需要几分钟?
4、小华有10个红气球,小花有8个黄气球。小华用4个红气球换小花3个黄气球,现在小华、小花各有几个球?
5、13个小朋友玩“老鹰抓小鸡”的游戏,已经抓住了5只“小鸡”,还有几只没抓住?
6、天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?
7、小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书?
8、小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱?
9、欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱?
10、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
11、15个小朋友排成一队,小东的前面有9人,小东后面有几人?
12、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
13、13只鸡排成一队,***只大公鸡,从前面数,它站在第8,它的后面有几只鸡?
14、13只鸡排成一队,***只大公鸡,它的前面有8只鸡,它的后面有几只鸡?
15、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
一年级数学思维训练应用题2
1、1千克梨有8个,1千克苹果比1千克梨的个数多1个,妈妈买了2千克梨和2千克苹果,共有苹果和梨()个。
2、一只蜗牛向前爬25厘米,又朝后退15厘米,在朝前爬10厘米,结果前进了()厘米。
3、小明第一天写5个大字,以后每一天都比前一天多写2个大字,6天后小明一共写了()个大字。
4、一辆公共汽车上有6个空座位。车开到团结站,没有人下车,但上来了9人,空座位还有2个,上车的人中有()人站着。
5、两箱苹果都重40千克,从第一箱中拿出8千克到第二箱后,第二箱比第一箱多()千克。
6、学校校门的右边插了8面彩旗,每两面彩旗之间的距离都是2米,从第1面彩旗到第8面彩旗之间共有()米。
7、一个三位数,十位上的数字是9,正好是个位数字的3倍,三个数位之和是13。这个三位数是()
8、冬冬今年10岁,爸爸今年40岁,冬冬()岁时,爸爸的年龄正好是冬冬的2倍。
9、小明栽树5棵,大强、李卫、大华和冬冬每个人栽的棵数和小明同样多。他们一共栽树()棵。
10、星期天,小刚在家烧水、泡茶。洗茶壶:1分钟,烧开水:15分钟,洗茶杯:1分钟,拿茶叶:2分钟。问:小刚最少要()分钟泡上茶。
一年级数学思维训练应用题3
1、5个人站成一排合影留念,有()种不同的排法。
2、一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量,一头象等于()头小猪的重量。
3、两数相乘,一个因数扩大20倍,要想使积不变,另一个因数()。
4、两数相减,如果被减数减少4,减数也减少4,差()。
5、有两袋糖,第一袋68粒,第二袋20粒,从第一袋中拿出()粒放入第二袋,才能使两袋中糖的数量相等。
6、从甲地到乙地有3趟火车、2轮飞机,一共有()种不同走法。
7、二年级的图书比一年级多160本,二年级图书的本数是一年级的3倍,一年级有()本书,二年级有()本书
8、在一条30米的步行街两边插彩旗,每隔5米插一面,一共可以插()面。
9、从上海到南京的航运线上,有9个停靠码头,那么有()种不同的船票。
10、两数相除,商是25,余数是35,如果被除数和除数同时缩小5倍,商是()余数是()。
七年级数学应用题带答案3篇(扩展8)
——数学应用题初二带答案
数学应用题初二带答案1
⒈一个正方体的棱长是7cm,再做一个正方体,它的体积是8倍,求新的正方体的棱长
⒉王师傅打算用铁皮旱制一个密封的正方体箱.使其容积为125m的*方,求需要多大面积的铁皮
⒊计划用100块地砖来铺设面积为16m的*方的客厅,求需要的正方形地板砖的边长
4.某商场用80000元从外地采购回一批应季“T恤衫”,由于销路好,商场又紧急调拨20万元采购回比上一次加倍的“T恤衫”,但第二次比第一次进价每件贵10元,商场在出售时**按每件60元的标价出售。为了缩短库存的时间,最后的200件按7.5折处理并很快售完。求商场在这笔生意上盈利多少元?
答案:
1.因为正方体的体积等于棱长的立方,由新的正方体的.体积是原正方体体积的8倍可知它的棱长是原正方体棱长的2倍,所以新正方体的棱长为7×2=14
2.正方体的体积等于棱长的立方,设棱长为X米,则
X^3=125
∴X=5
既棱长为5米.此时正方体的表面积为6X^2=6×5^2=6×25=150(*方米)
所以,所需的铁皮面积为150*方米.
3.设正方形地砖的边长为X米,由题意得:
100X^2=16
X^2=0.16
∵X>0,
∴X=0.4
即 所需地砖的边长为0.4米.
4.第一批进价x元/件,第二批进价x+10元/件
80000/x*2=200000/(x+10)
x=40
x+10=50
第一批进80000/40=2000件
第一批进2*2000=4000件
商场在这笔生意上盈利:
2000*(60-40)+(4000-200)*(60-50)+(60*0.75-50)*200
=40000+38000-1000
=77000元
商场在这笔生意上盈利77000元
七年级数学应用题带答案3篇(扩展9)
——七年级数学教案
七年级数学教案
作为一名专为他人授业解惑的人民教师,总归要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!以下是小编精心整理的七年级数学教案,欢迎大家分享。
七年级数学教案1
1.1 生活中的立体图形
〖教学过程:〗
一、看一看:(情境创设)
教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。
设计:(1)卡通A(***面图形):“我是*面图形,是大家的老朋友,我家的家庭成员一定比你家多。”
(2)卡通B(**立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”
教师(问):卡通A、B身体各部分是什么图形?
通过卡通A、B 的对话,**学生讨论,派**指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。
教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。
(出示课题):生活中的立体图形
音乐响起,屏幕播放录象。
二、议一议(课堂讨论)
问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?
**学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。
问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?
电脑演示:(1)球体 (2)圆柱 (3)圆锥
并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。
电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),
问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的*面的个数之间的关系?
诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?
(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。
通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。
三、练一练(评价)
遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:
1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。
尽量让每个学生都发言,注意培养学生的语言表达能力。
七年级数学教案2
教学目标:
1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
多**课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用**数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都**的最低气温:**又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,**的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
②**的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段**台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?****高峰——珠穆朗玛峰从山脚到山顶,气**差很大,这是和它的海拔高度有关的。最近**家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海*面高8844。43米;吐鲁番盆地比海*面低155米)。
4、珠穆朗玛峰比海*面高,吐鲁番盆地比海*面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。
吐鲁番盆地的海拔可以记作:—155米。(板书)
(2)小结:以海*面为界线,+8844。43米或8844。43米这样的数可以表示海*面以上的高度,—155米这样的数可以表示海*面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海*面以上的高度和海*面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海*面为界线,高于海*面的高度我们用正几来表示,低于海*面我们用负几表示。0是**数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和—1表示什么意思?(以地*面为界线,地*面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海*面以上和海*面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七年级数学教案3
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用**数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海*面8848米,吐鲁番盆地低于海*面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,*古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海*面8848米,记作+8848米;低于海*面155米,记作—155米;
教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
四、课后作业:课本P5习题1。1A第1、2、4题。
七年级数学教案4
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学**元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的**者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以**思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多**辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是-,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
-+y=10
2-+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(-和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
-+y=10
2-+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的-、y的值有哪些?把它们填入表中。
- -y
y
上表中哪对-、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示*移观察分析、**思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效**,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,**思考,形成主见并进行交流,创设**、宽松**的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的***、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学**的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水*层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
七年级数学教案5
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸**意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用**,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或**上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用**,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
七年级数学教案6
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七年级数学教案7
本节课的主要任务是引导学生完成由立体图形到视图,再由视图想到立体图形的复杂过程。这对于刚刚接触几何的初一学生而言,无疑是一次较大的挑战,顺利地完成教学,对今后学习兴趣、信心的培养都是至关重要的,因此,我针对学生的心理特点及接受能力对教材做如下设计:
首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。
然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的*面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。
由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。
评课记录
开发区李玉:于坤老师这节课有几个突出特点:
1、给学生创设了生动的问题情境。
本节课用宋朝文学家苏轼的一首的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的***。在*日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。
2、注重过程教学和学法指导
在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、**思考、猜想———小组讨论交流———让一个小组**发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。
3、体现学生主体地位,注重学法指导
教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。教科院*光老师:
1、周六研究课的定位:本学期的周六研究课不再是一节公开课,而是为解决我们在*日教学中存在的问题而开设的研究、研讨课。
2、在*日的教学中,不少学校和老师存在这样的现象:课堂上老师讲的多,学生学的少;学生听明白的多,学会的少。究其原因,是我们只注重了终端的结果,而忽视了学习知识的过程。因此在今后的课堂教学中,我们应该让学生掌握知识的发生、发展的过程,让教师和学生充分暴露思维的过程,另外让学生学会学习数学的方法,这也是我们的任务之一。这两节课在这些方面都做了有益的探索。如王长山老师给学生提供了丰富的材料让学生思考、探索,在教学过程中渗透数学思想和方法。于坤老师抓住本节课的核心问题,处处让学生参与到学习探究活动中,教学生观察事物的方法,寻找数学与生活的联系等作法,就很好地体现了新课改的理念。当然并不是所有的课型都让学生探究、讨论,如果讲解能引发学生思维的就用讲解法,讨论交流能引发思维的就用讨论法,总之,在教学中要充分调动学生思维的积极主动性。另外一定要突出数学自身的特点,在我们的老师的课上,多数老师在一节课的结尾都让学生谈谈本节课学会了哪些知识、方法,有什么体会,对本节的内容进行概括性总结,这样做就让学生对本节课有了整体认识。另外不少老师强调严密的逻辑思维、严格的解题步骤等作法都值得发扬。
七年级数学教案8
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的*方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的*方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
三、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
五、作业
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
七年级数学教案9
教学设计思路
以小组讨论的形式在教师的指导下通过回顾与反思前三章所学内容,领悟新旧知识之间的内在联系,总结知识结构及主要知识点,侧重对重点知识内容、数学思想和方法、思维策略的总结与反思,再通过练习巩固这些知识点。
教学目标
知识与技能
对前三章所学知识作一次系统整理,系统地把握这三章的知识要点;
通过回顾与反思这三章所学内容,领悟新旧知识之间的内在联系;
通过练习,对所学知识的认识深化一步,以有利于掌握;
发展观察问题、分析问题、解决问题的能力;
提高对所学知识的概括整理能力;
进一步发展有条理地思考和表达的能力。
过程与方法
在老师的引导下逐张复习每张的知识要点,通过练习来巩固这些知识点。
情感态度价值观
进一步体会知识点之间的联系;
进一步感受数形结合的思想。
教学重点和难点
重点是这三章的重点内容;
难点是能灵活利用这三章的知识来解决问题。
教学方法
引导、小组讨论
课时安排
3课时
教具学具准备
多**
教学过程设计
通过每一章的知识结构及一些相关问题引导学生总结出每一章的知识点。
七年级数学教案10
教学目标:
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用**数表示互为相反意义的量.
教学重点:会判断正数、负数,运用**数表示具有相反意义的量,理解表示具有相反意义的`量的意义.
教学难点:负数的引入.
教与学互动设计:
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水*面和低于水*面的不同情况.
(二)合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用**数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()
A.3B.-3C.-2.5D.-7.45
【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈
夯实基础
1.填空题:
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;
(2)下午5时的水位比中午12时水位高多少?
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)
七年级数学教案11
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比 的2倍大2的数。
分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
七年级数学教案12
一、 教学目标
1、 在了解相反意义量的基础上,使学生了解**数的概念和学习**数的意义。
2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、 学会用**数表示实际问题中具有相反意义的量。
二、 教学重点和难点
重点:**数的概念
难点:负数的概念
三、 教具
投影片、实物投影仪
四、 教学内容
(一 )引入
师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?
生:自然数
师:为了表示“没有”,又引入了一个什么数?
生:自然数0
师:当测量和计算的结果不是整数时,又引进了什么数?
生:分数(小数)
师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海*面155米,世界最高峰珠穆朗玛高出海*面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]
(二)新课教学
1、 相反意义的量
师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)
(1) 汽车向东行驶2.5千米和向西行驶1.5千米;
(2) 气温从零上6摄氏度下降到零下6摄氏度;
(3) 风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义
请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、 正数与负数
师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?
由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。
生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。
师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?
生:(讨论后得出)不能。
师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
(三)、练习
1、 学生完成课本第4页练习1,2,3
2、 补充练习
(1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;
(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?
(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。
(四)小结
1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、 要特别注意零既不是正数也不是负数,建立**数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
(五)作业
见作业1.1节作业。
七年级数学教案13
一元一次不等式组
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
七年级数学教案14
教学目标:
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点:
数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动) 设计理念
设置情境
引入课题
教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多**出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。
探究新知
教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解
寻找规律
归纳结论
问题3:
1, 你能举出一些在现实生活中用直线表示数的实际例子吗?
2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4, 每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结
请学生总结:
1, 数轴的三个要素;
2, 数轴的作以及数与点的转化方法。
本课作业
1, 必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
七年级数学教案15
教学目标
1、熟练掌握加减消元法;
2、能根据方程组的特点选择合适的方法解方程组,
3、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.
教学难点
教材中例4的数量关系较复杂,是本课的难点。
知识重点能根据方程组的特点选择合适的方法解方程组。
教学过程
(师生活动)设计理念
创设情境
1、复2、习**
解二元一次方程组有哪几种方法?它们的实质是什么?
2、播放动画《西游记》场景,配数学诗.
悟空顺风探妖踪,千里只行四分钟.
归时四分行六百,风速多少才称雄?
请一名学生解释诗歌大意:孙悟空顺风去查妖精的行踪,仅用4分钟就飞跃千里.逆风返回时4分钟走了600里,问风速是多少?
学生思考,根据题中等量关系,列出方程.
设悟空行走速度为x里/分,风速为y里/分,则
你会解这个方程组吗?引例生动活波,激发学生的探究欲望,让学生在看、听、想的过程中愉悦地获得数学知识.
探究新知学生**完成后.在班级里交流解法.
解法一:①+②,消去y,得8x=1600
∴x=200,代人①,得y=50
原方程组的解为
解法二:①-②,消去x。以下略.
解法三:整体代入.由①得:4x=1000-4y,代入②,消去x.
同理,也可消去y.
解法四:化简原方程组为,再利用加减消元,或代入消元均可.
反思:试着从各个角度比较“代入法”与“加减法”的共同点与不同点.(同学间相互交流)它们各适用于什么情况?
在学生回答的基础上,教师指出:当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为零时,用代入法较方便;当两个方程中,同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.
练习1:根据方程组的特点选择更适合它的解法.你会怎样解呢?(第1,2小题完成后再出示第3小题.)
(1)
(2)
(3)
第1小题用代入法,第2小题用加减法,都很明确,第3小题有争议.全班分成两部分.1、2大组用代入法做,3、4大组用加减法做.比较两解法的简便程度.
反思:当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单.尝试不同的解法,培养学生的发散性思维和择优意识。
解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择不同的方法可以减少弯路,加快速度使解题过程简洁提高正确率.
实际应用教材第109页例4.
2台大收割机和5台小收割机工作2小时收割小麦
3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?
分析:
问题1.列二元一次方程组解应用题的关键是什么?
(找出两个等量关系)
问题2.你能找出本题的等量关系吗?
2台大收割机2小时的工作量+5台小收割机2小时的工作量=3.6
3台大收割机5小时的工作量+2台小收割机5小时的工作量=8
问题3.怎么表示2台大收割机2小时的工作量呢?
设1台大收割机1小时收割小麦x公顷,则
2台大收割机1小时收割小麦_公顷,
2台大收割机2小时收割小麦_公顷.
现在你能列出方程了吗?
解后反思:应用题中,如何化解较复杂数量关系?
练习2:教科书第111页练习第3题应用题.体会方程是刻画现实世界的有效数学模型。
小结与作业
小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行。
本节课学习了哪些内容?你有哪些收获?
布置作业
8、做题:教科书112页习题8.2第5、7题。
9、选做题:教科书112页习题8.2第8题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、能根据教材编写思路,遵循学生的心理特点,创造性使用新教材中的问题情境(引入与111页练习3属同种数学模型),把教材中不动的问题情境转化为动的问题情境.
2、真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和**者.由于学生的个体差异,思维方式的不同,为了给学生创造个性化的学习空间,鼓励学生们用自己的方式去学习,把学习的主动权还给他们,让他们自己去探究不同的解题方法.通过例题分析、启发**、集体讨论等形式,使学生能准确而迅速地确定解题方法从而突出了本课的重点、难点—选择适当方法求解二元一次方程组.
七年级数学应用题带答案3篇(扩展10)
——七年级数学教学总结
七年级数学教学总结
总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它能够给人努力工作的动力,不如立即行动起来写一份总结吧。那么如何把总结写出新花样呢?以下是小编整理的七年级数学教学总结,仅供参考,大家一起来看看吧。
本学期,担任七年级(2)班的数学教学工作,从各方面严格要求自己,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,怒力实施教学工作计划,有**,有步骤地开展。下面我谈谈一期来我对七年级数学教学工作总结:
一、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前作好充分的`准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
二、充分发挥学生的主体作用。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
三、虚心请教其他老师。在各个章节的学**都积极征求同级同组其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
四、认真批改作业,布置作业做到精读精练。有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学*的辅导,使之对学习萌发兴趣,提高他们的信心。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的,从而自觉的把身心投放到学习中去。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。我在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
七、经过一个学期的努力,从这份教学工作总结中不难看出,一部分同学成绩有所提高。存在的不足是,学生的知识结构还不是很完整,小学的知识系统还存在很多真空的部分。因为很多社会因素的影响,很多学生厌学,导至教学工作很难开展,学生的学习成绩很难提高。如何解决呢?这些都有待以后改进。教学中的困惑:在教学中,我注重采用小组合作交流,共同学习,但在此过程中,好的学生能积极讨论、发言、学到了很多知识,发展了他们的能力,但对于哪些调皮学生来说,讨论简直是一种放松。什么都没有学到,学生与学生之间的两极分化日趋严重,作为教师十分头疼,如何解决呢?还有待探索和研究。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除