生活中的数学问题300字优秀作文

第1篇:生活中的数学问题300字优秀作文

昨天,我跟妈妈去超市。

挑好了东西我和妈妈就来到付钱的地方算钱。我站着无聊,就看着营业员阿姨收钱。只见营业员阿姨告诉妈妈一共187元,我看见妈妈分别把1元、2元、5元、10元、20元、50元100元递给阿姨。我看着这些钱,感到很奇怪:**为什么没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我怀着好奇的心情问了妈妈,妈妈鼓励我说:“好好动脑筋想想算算。”我定下心,仔细地想了起来。过了一会儿,我的脑子好像一下子开窍了明白了便告诉妈妈:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,我也开心极了,因为我解开了一道生活中的问题。

其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现!

第2篇:生活中的数学问题作文300字

今天,妈妈带我去菜场买菜。菜场里的菜可多了!我和妈妈边走边看,不知不觉地来到了买榨菜的地方。我说:“妈妈,我们买一袋榨菜吧?”妈妈说:“好吧!可是你要回答一个数学问题,四袋榨菜是一元钱,一袋是几元钱呢?”我思考了一会儿说:“2元5角。”妈妈说:“再想想!”“哦!我想了一会说:“应该是2角5分。”我说。妈妈笑着问我是怎么算出来的,我说:“我是拆开来算的,一元钱买二袋,每袋是五角钱,五角钱再买两袋,每袋是2角5分,就等于一元钱买四袋的价钱。“妈妈说:“你真聪明,答对了,这包榨菜给你当奖品!”

我的反思

以前,我一直有一个坏毛病,就是上课屁股坐不住,总是要离开位置,为这个毛病,妈妈不知道说了我多少次,但我总是耳边风,改不掉。前不久,我在老师和妈妈的帮助下,想了一个好办法,就是让老师每天记录我上课的表现,这招果然有用,我渐渐地改掉了这个坏毛病。但是老师说我还有一个坏毛病,就是上课爱*嘴,但不知为什么,我想努力地改,但是上课一兴奋,就不由自主地说出来了。我下定决心到五月底一定要改掉这个坏毛病,请老师和妈妈看我的行动。

第3篇:生活中的数学问题日记

在*节放假的时候,我和爸爸、妈妈一起回了趟老家,到了曲阳高速服务区的时候,我们休息了一会儿,也顺便给车加了一下油,要不然车就没油了。

不大一会儿,我们加完油,又开车上路了,突然爸爸问我:“看你平时数学学得不错,那我就考考你吧!咱们刚才加油,加1升油7。52元,咱们共加了50升油,是多少元?”我想了想说∶“应该用7。52×50=376〔元〕,咱们刚才加油一共花了376元,对不对?”“对,不错,别得意,我在考考你,如果10升油可以跑100公里,咱们加了50升油,油箱如果还剩60升油从石家庄到唐山老家有400公里,够不够?如果在从老家返回石家庄呢?够吗?”爸爸说。“呵!有两个问题,不过难不倒我,应该用50+60=110升,再用110除以10乘以100等于1100公里,1100大于400,第一问:够了,再看第二问,用1100减去400等于700,700大于400,返回石家庄也够了,怎么样,对不对?”“ok,完全正确,你数学学得不错,非常好!”

我想:还好数学学得不错,否则就打不上来了。其实,数学还有更多的问题和奥秘,只要我们一起去努力去探索、去学习,一定会成功的!

日常生活中,我们会遇到许许多多有趣的数学问题,如:推理问题、周期问题、植树问题等等。数学王国真是奇妙无穷,但又往往让你捉摸不透,甚至还会产生错觉呢!

记得在我读幼儿园时,我很喜欢边爬楼梯边数台阶数,我家当时住在六楼,每个楼层之间有18个台阶,每次离家和回家我都要牵着妈妈的手数台阶数,每次数的结果都是90级,妈妈还老夸我聪明呢。

到读小学时,我学了简单的乘法后,不假思索地认为我每次回家上六楼应该爬108级台阶才对呀,因为住在六楼,每层有18级台阶数,根据乘法原理,6×18=108(级)。可我实际上每次只需爬90级台阶就到家了,当时我心里打了个大大的“?”号,不知何因。于是我带着满脸的疑惑问了我家的智多星?爸爸。爸爸听后笑了笑,但什么也没解释,他牵着我的手来到了一楼,笑着说:“孩子,你想想看,如果我们家住在一楼,需不需要爬18级台阶呢?如果住二楼、三楼我们需要爬多少级呢?你再爬爬,体会体会。”听了爸爸的话,我带着“?”又体验了一番。结果是一楼不用爬,二楼需爬18级,而三楼只需爬36级,我又如此这般爬到了七楼,爬了108级。通过这些体验,我恍然大悟,寻到了其中的规律:

楼层要爬的台阶数

1(1-1)×18

2(2-1)×18

3(3-1)×18

……

n(n-1)×18

于是我得出了一个关系式:(层数-1)×每层台阶数=需爬的台阶数。我把这个关系式告诉爸爸,爸爸看后会心地笑了。其实,生活中的数学问题非常多,也非常有趣且具有现实意义,需要我们不断地去发现,去探索,去总结。

数学是一门非常讲究思维的课程,逻辑*很强,经常会让人产生错觉。所以我们要做生活的有心人,不断开拓自己的思维,做个勇于攀登数学高峰的人。还等什么,让我们一起去探索数学王国中的奥秘吧!

今天,妈妈带我去菜场买菜。菜场里的菜可多了!我和妈妈边走边看,不知不觉地来到了买榨菜的地方。我说:“妈妈,我们买一袋榨菜吧?”妈妈说:“好吧!可是你要回答一个数学问题,四袋榨菜是一元钱,一袋是几元钱呢?”我思考了一会儿说:“2元5角。”妈妈说:“再想想!”“哦!我想了一会说:“应该是2角5分。”我说。妈妈笑着问我是怎么算出来的,我说:“我是拆开来算的,一元钱买二袋,每袋是五角钱,五角钱再买两袋,每袋是2角5分,就等于一元钱买四袋的价钱。“妈妈说:“你真聪明,答对了,这包榨菜给你当奖品!”我的反思以前,我一直有一个坏毛病,就是上课屁股坐不住,总是要离开位置,为这个毛病,妈妈不知道说了我多少次,但我总是耳边风,改不掉。前不久,我在老师和妈妈的帮助下,想了一个好办法,就是让老师每天记录我上课的表现,这招果然有用,我渐渐地改掉了这个坏毛病。但是老师说我还有一个坏毛病,就是上课爱*嘴,但不知为什么,我想努力地改,但是上课一兴奋,就不由自主地说出来了。我下定决心到五月底一定要改掉这个坏毛病,请老师和妈妈看我的行动。

数学来源于实践,生产和生活中充满着数学事实,人们生活最基本的方式衣、食、住、行,随着市场经济的逐步完善,生活中的科学化、经济活动中的最优化,无不需要人们具有更多的能有效运用的数学知识、思想和方法.一元一次方程,虽说是最简单的方程,却颇为有用,这里列出了它在衣、食、住、行方面的用途,供同学们在学习知识的过程中,密切联系实际,学有所得,学以致用,增强实践力.

一.“衣”

例1某服装店一天内销售两种服装,*种服装共卖得1560元,为了构建*社会,乙种服装送到乡下共卖得1350元,若按*、乙两种服装的成本分别计算,*种服装盈利25%,乙种服装亏本10%,试问该服装店这一天共盈利(或亏本)多少元?

解:设这一天内销售的*种服装成本为x元,乙种服装成本为y元,则有

x+25%x=1560,①解①得x=1248.

y-10%y=1350,②解②得y=1500.

∴销售额—两种成本=(1560+1350)-(1248+1500)=162(元).

答:该服装店这一天盈利162元.

二.“食”

例2一批食品,如果年初售出,可获利1万元,如果年末售出,可获利2.3万元.但需付仓储保管费1000元,同时年初售出后可以将本利一起用入周转,抵减银行贷款,银行贷款年利率为24%,问这批食品是年初还是年末售出为好.

解设这批食品的成本为a元,若年初售出后抵减银行贷款,则利润和少付利息为:

(a+10000)·24%+10000.

所以有23000-1000-〔(a+10000)·24%+10000〕

=0.24(40000-a).

当成本费大于40000元时,年初售出最好;当成本费等于40000元时,年初年末售出均可;当成本费小于40000元时,年末售出最好.

三.“住”

例3.某房地产开发商对购房者可提供分期付款服务:首期付款3.2万元,以后每月付1000元,陈先生想用分期付款形式购买一套价值28万元的住房,他需要多长时间才能付清全部房款?

分析:设x个月付清全部房款.根据题意可有下面的等量关系:首期付款+以后每月付款和=28万元.

解:设x个月付清全部房款.根据题意得:

3.2+0.1x=28

解得:x=248即20年零8个月付清全部房.

点评:列一元一次方程解决实际问题,关键是找出包含问题全部意义的等量关系,然后列出方程.解出方程后,经过检验,就可得到实际问题的*.另外在列方程时,要注意单位的统一.

四.“行”

例4.*乙两人骑自行车,同时从相距65千米的两地相向而行,*的速度为17.5千米/小时,乙的速度为15千米/小时,经过几个小时*乙两人相距32.5千米.

分析本题容易漏解.应用两种情况讨论.

解设经过x小时两人相距32.5千米时,

(1)相遇前两人相距32.5千米,方程为

17.5x+15x=65-32.5:

(2)相遇后两人相距32.5千米时,方程为

17.5x+15x=65+32.5.

我们平时看见的足球是用黑白两种颜*的皮缝制而成的。黑皮是正五边形的,白皮是正六边形的,那么如果其中黑皮有12块,白皮有多少块,这就是一个足球几块白皮的数学问题。

怎么样?是不是觉得非常困难,无处下手啊?

提示一下:利用“所有正六边形的总边数=所有正五边形的总边数”来求解。

过程如下:

每块黑皮有五条边,十二块黑皮共有5×12=60条边,每块白皮有三条边与黑皮在一起,因此白皮共有60÷3=20块。我检验了一下,足球真的是有20块白皮。

旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半小时可将待检旅客全部检票进站;同时开放两个检票口,只需十分钟便可将旅客全部进站,现有一班增开列车过境载客,必须在5分钟内旅客全部检票进站,问此车站至少要同时开放几个检票口?

分析:

(1)本题是一个贴近实际的应用题,给出的数量关系具有一定的隐蔽*。仔细阅读后发现涉及到的量为:原排队人数,旅客按一定速度增加的人数,每个检票口检票的速度等。

(2)给分析出的量一个代表符号:设检票开始时等候检票的旅客人数为x人,排队队伍每分钟增加y人,每个检票口每分钟检票z人,最少同时开n个检票口,就可在5分钟旅客全部进站。

(3)把本质的内容翻译成数学语言:

开放一个检票口,需半小时检完,则x+3y=z

开放两个检票口,需10分钟检完,则x+10y=2×10z

开放n个检票口,最多需5分钟检完,则x+5y≤n×5z

可解得x=15z,y=0.5z

将以上两式带入得n≥3.5z,∴n=4.

答:需同时开放4个检票口。

有人认为广义的组合数学就是离散数学,也有人认为离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要*也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。

狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。

组合数学中的著名问题

地图着*问题:对世界地图着*,每一种国家使用一种颜*。如果要求相邻国家的颜*相异,是否总共只需四种颜*?这是图论的问题。

四*定理指出每个可以画出来的地图都可以至多用4种颜*来上*,而且没有两个相接的区域会是相同的颜*。被称为相接的两个区域是指他们共有一段边界,而不是一个点。

这一定理最初是由francisguthrie在1853年提出的猜想。很明显,3种颜*不会满足条件,而且也不难*5种颜*满足条件且绰绰有余。但是,直到1977年四*猜想才最终由kenhappel和wolfganghaken*。他们得到了j.koch在算法工作上的支持。

*方法将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程序和计算机*的进行了复检。在1996年,neilrobertson、danielsanders、paulseymour和robinthomas使用了一种类似的*方法,检查了633种特殊的情况。这一新*也使用了计算机,如果由人工来检查的话是不切实际的。

四*定理是第一个主要由计算机*的理论,这一*并不被所有的数学家接受,因为它不能由人工直接验*。最终,人们必须对计算机编译的正确*以及运行这一程序的硬件设备充分信任。参见实验数学。

缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学*应当像一首诗——而这纯粹是一本电话簿!”

船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河?这是线*规划的问题。

*邮差问题:由*组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个np完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。

任务分配问题(也称婚配问题):有一些员工要完成一些任务。各个员工完成不同任务所花费的时间都不同。每个员工只分配一项任务。每项任务只被分配给一个员工。怎样分配员工与任务以使所花费的时间最少?这是线*规划的问题。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除