数学建模论文(精选5篇)

数学建模论文范文第1篇

在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。

2数学建模思想在概念教学中的渗透

按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。

3数学建模思想在定理证明中的渗透

在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。

4数学建模思想在课题中的渗透

数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。

5数学建模思想在考试命题中的渗透

目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。

6结语

数学建模论文范文第2篇

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

工具/原料

调查收集的原始数据资料

Word公式编辑器

步骤/方法

数学建模建模理念为:

一、应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

二、数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

三、创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。建模论文主要包括以下几个部分:

一、摘要800字,简明扼要(要求用一两字左右,简明扼要(字左右句话说明题目中解决的问题是什么、用什句话说明题目中解决的问题是什么、么模型解决的、求解方法是什么、么模型解决的、求解方法是什么、结果如何、有无改进和推广)。有无改进和推广)。

二、问题的重述简要叙述问题,对原题高度压缩,切记不要把原题重述一遍。

三、假设1.合理性:每一条假设,要符合实际情况,要合理;2.全面性:应有的假设必须要有,否则对解决问题不利,可有可无的假设可不要,有些假设完全是多余的,不要写上去。

四、建模与求解(60~70分)1.应有建模过程的分析,如线性规划、非线模型中目标函数的推导过程,每一个约束条件的推导过程,切记不要一开始就抬出模型,显得很突然。2.数学符号的定义要确切,集中放在显要位置,以便查找。3.模型要正确、注意完整性。4.模型的先进性,创造性。5.叙述清楚求解的步骤。6.自编程序主要部分放在附录中(所用数学自编程序主要部分放在附录中。7.结果应放在显要的位置,不要让评卷人到处查找。

五、稳定性分析、误差分析、1、微分方程模型稳定性讨论很重要。2、统计模型的误差分析、灵敏度分析很重要。

六、优缺点的讨论1.优点要充分的表现出来,不要谦虚,有多少写多少2.对于缺点适当分析,注意写作技巧,要避重就轻。大事化小,小事化了。

七、推广和改进这是得高奖很重要的一环,如有创新思想即使不能完全完成也不要放弃,要保留下来。

八、文字叙述要简明扼要、条理清楚、步骤完整,语言表达能力要强。

九、对题目中的数据进行处理问题对题目中数据不要任意改动,因问题求解需要可以进行处理。如何处理,应注意合理性。1.先按题给条件作一次。2.发表自己见解,合理修改题目。

注意事项

数学建模论文范文第3篇

论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。

目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(三)在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

参考文献:

1.《问题解决的数学模型方法》北京师范大学出版社,1999.8

2.普通高中数学课程标准(实验),人民教育出版社,2003.4

数学建模论文范文第4篇

物理问题来源于社会生活的众多领域,通过建立数学模型,学生学会了独立查阅文献资料获取知识,并重新组合处理这些信息。因此通过在物理课程中引入数学建模,可以极大地训练学生的逻辑思维、发散性思维。不仅可以拓宽学生的眼界,而且能提高学生的学习技能和分析问题和解决问题的能力。数学建模需要大量信息,集思广益,因此数学建模的学习注重团队分工合作。作为学生个体,每个人必须学会与人合作,与人交流,既要不断提高知识储备和解决问题的能力,又要学会资源共享、能力互补,这也是学生走上社会和工作岗位不可或缺的基本能力之一。

二、将数学建模引入高职物理的设计原则

针对高职物理教学的现状,在引入数学建模的教学实践中,总体思路是由浅入深、循序渐进地讲解各种数学建模的方法和解题思路,以避免学生在学习的过程中产生畏难的情绪,逐步引导学生使用数学建模方法学习物理知识,这是在物理教学中引入数学建模的总体原则。

(一)分层次、分阶段在高职物理教学中引入数学建模通过采用高中物理应用题为高职学生进行物理数学建模能力的初始阶段培养,充分考虑高职学生的数学、物理基础不够扎实、其他领域知识不够完善,保护了学生参与建模活动的积极性。通过在物理教学中引入数学建模,学生体会到物理学习的现实意义,认识到数学知识的价值,从而激发学生学习物理的兴趣与欲望。在学生熟练后,可以由浅入深、循序渐进,通过对物理问题的思考,引导学生用数学建模的方法探寻解决问题的思路。

(二)以点带面、点面并重促进整体教学质量的提高将物理基础教育作为“面”,数学建模教育作为“点”,物理学科是培养学生应用与创新能力的重要学科,而数学建模是培养应用与创新能力的有效途径。它是一种崭新的教学模式,是培养学生物理应用能力、创新能力和科研合作能力的一个较好平台。通过数学建模来解决实际问题需要的正是学生的创造性思维和创新能力,而贯穿于数学建模活动全过程的也正是训练学生如何摄取和运用已有知识和经验的能力。数学建模的引入使物理学习中趣味性提高,使物理课程更具实用性,形式多样,容易激发学生的兴趣,通过这样的方式吸引学生对物理课程的兴趣,将数学建模的思想渗透到物理学的教学中去,用数学建模教学带动高职物理教学的发展。

三、将数学建模思想引入高职物理教学的实施策略

(一)在物理课堂中引入数学建模的步骤“数学建模”就是运用数学思想、方法和知识解决实际问题的过程,也是物理问题解决的桥梁和途径。为了把握数学建模的思想内涵,确保“融入”物理课堂不流于形式,数学建模的过程大致分为几步:(1)物理问题或案例引入;(2)用数学工具处理问题(数学建模),也就是运用数学的思维将问题“提纯”;(3)用数学知识解决问题(数学解模);(4)将数学问题的结论与现实进行比较(模型的验证),从而帮助学生发现内在的联系和规律,并以此探究解决实际问题的途径和对策(模型的应用)。数学建模过程也可用图表表示,在数学建模的过程中,学生通过对物理问题的观察、假设,将其转化为一个数学问题,然后求解数学问题,得到所求,再回到物理问题中,看是否能解释物理问题,是否与实际经验或数据相吻合,若吻合,那么数学建模过程就完成了。这样的过程,符合学生认知过程的发展规律,能极大地激发学生学习物理的积极性,使学生的创造潜能得到了充分的开发。

数学建模论文范文第5篇

教育国的核心是培养创新型人才。全国大学生数学建模竞赛是高校中参加人数最多、影响最广泛的学科竞赛之一,此项赛事由教育部高教司和中国工业与应用数学学会联合主办,迄今已举办21届,它对创新型人才的培养起到了不可估量的作用,未来也将日益显现它这方面的作用。长春理工大学从1996年开始参赛,成绩斐然,已累计获得部级奖40余项,年均3项,2023年我校共有51队153人参加全国赛,是吉林省除吉林大学外参赛队数最多的高校。其中9队获得国家一等奖,11队获得省一等奖,21队获省二等奖,8队获省三等奖,获奖率位居吉林省参赛高校前列。这主要归益于以下几方面:

一、赛前的动员及组织情况

赛前周密的宣传组织工作是本次大赛取得成功关键因素之一。我校一直把组织数模竞赛作为一项重要的教学活动纳入了全年工作日程,专门成立了数学建模竞赛领导小组,协调、督促、组织数学建模竞赛各项准备活动。通过海报、课堂、网站等多种形式宣传开展数学建模活动,鼓励各学院学生踊跃报名。

二、竞赛具体过程管理和实施情况

由专人统筹负责竞赛工作。从每年四、五月份开始采取校级、省级竞赛层层选拔的制度,把最优秀、最渴望参赛、最有能力的队员吸纳进来组成国家赛参赛队伍。对于国赛队员将认真组织赛前培训和辅导工作。

三、本年度竞赛获奖情况分析

今年我校共有51个队参加了全国大学生数学建模竞赛,获得国家奖9项,省级奖40项,获奖率几近100%。

四、竞赛过程中存在的问题及拟解决的措施

1.竞赛过程中存在的主要问题还是数学软件使用和写作两方面,在今后的培训和其他级竞赛中应加强这两方面的训练。另外宣传力度也有待加强。

2.今年全国赛我校51队中有35支代表队选择了A题,此题是交通占道问题对城市交通能力的影响问题,实质是利用数学方法建立模型,需要学生有较好的微积分、常微分方程、运筹学等课程基础,正是由于我校平时对大一大二的数学基础课的精心讲解和严格要求才使得我校学生有信心也有能力作出此题并取得了如此好的成绩,今后我们将继续加强数学基础科的教学工作,同时注意在教学中渗透数学建模的思想、方法,培养学生参加建模的兴趣。并希望以数学建模工作为平台,通过多种形式大力开展数学建模教学与研究活动,以赛促学、以赛促教,以竞赛推动教学研究,以教学研究提高竞赛质量。B题选择队数相对较少,原因主要是该题是关于碎纸文字的拼接复原模型,需要队员熟悉算法,精于编程,大多数同学不敢碰此题原因就是编程能力过弱。

3.国家赛获奖结果反映出理学院、计算机科学与技术学院、光电工程学院、电子信息工程学院的学生获奖人数占到98%,创新实验班参赛人数并不多,仅占总人数的33%,特别是计算机科学与技术学院的创新实验班仅有8人参加,不及总人数的6%。

五、对学校的建议和意见

1.认真组织各级数学建模竞赛,建议提前到3月中旬组织校数学建模竞赛,改进选拔方式,通过评审、教师推荐、答辩精选国赛参赛队员,加大对数学软件、算法的培训;5月下旬到7月中旬,利用周六对选拔出的学生进行实战培训,建议全体队员模拟实战,完成3-4道往年的竞赛题目,并提交论文,指定专门教师负责指导。

2.进一步宣传发动,动员更多的学生参加数学建模竞赛,特别是加大对计算机学院的宣传力度,争取更多的计算机科学与技术学院,特别是动员计算机科学与技术学院创新实验班的同学参赛。

3.继续举办大学生数学建模培训,切磋技艺,交流经验,提高水平。组织教师精讲获国家奖的学生论文。同时每年选派2至3名指导教师参加建模交流会议及理论学习,也让更多教师参与数学建模类教改科研项目,将数学建模作为一件可持续发展的项目开展。

4.抓好数学建模基地建设,定期做讲座和研讨,打造一支高素质建模指导教师队伍。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除