考研数学概率的重点复习指导 (菁选2篇)
考研数学概率的重点复习指导1
一、仔细分析考试大纲,抓住重点
考试大纲是最重要的备考资料,虽然20xx年的考试大纲还没有出,不过从历年的数学大纲来看,每年基本上没有变化,所以大家可以先参考2014年考研数学大纲,将大纲中要求的内容仔细梳理一下,在复习过程中一定要明确重点,对于不太重要的内容,如古典概型,只要求掌握一些简单的概率计算即可,不需要在复杂的题目上投入太多精力。而对于概率的重点考查对象一定要重视,例如,随机变量函数的分布基本上每年都会以解答题的形式考查,其中离散型随机变量函数的分布是比较简单的,连续型随机变量函数的分布是考试频率最高的,也是较难的一类题目,在利用分布函数法求概率密度函数过程中,如何正确寻找分段点以及确定积分上下限是正确解决这类问题的关键,所以*时复习要加强这类题型的训练,一个离散型一个连续型随机变量函数的分布,求最大值、最小值函数的分布考频也是比较高的。另外,二维连续型随机变量的边缘分布、条件分布也是考试的重点,大家在复习过程中一定要深刻理解他们的定义和计算方法。随机变量的分布还经常与数字特征结合出题,所以数字特征也是概率的一大重点,但往往考生对于这部分知识掌握的不好,失分现象严重,所以要求大家复习时要灵活应用数字特征相应的计算公式及性质。数理统计中,参数估计的矩估计法和最大似然估计法及验证估计量的无偏性也是解答题中经常考查的知识点,大家复习过程中要特别重视。
二、加强对基本概念、基本性质的理解
从历年试题看,概率论与数理统计这部分内容主要考查考生对基本概念、原理的深入理解以及分析解
决问题的能力,需要考生能够做到灵活地运用所学的知识,建立起正确的概率模型去解决概率问题。所以
大家在复习过程中要准确理解概率论与数理统计中的基本概念,基本性质,为了深刻记忆,我们可以结合
一些实际问题去理解,只要概念和公式理解准确到位,并且多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。
基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、理论和方法。
三、重视真题的训练
真题是最具有**性的资料,因为概率统计考试内容和技巧比较单一,变化相对较少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水*,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时,,强化知识和方法。最后,把近十年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。
四、回顾知识点,进行适当的模拟训练
最后冲刺阶段,需要回归教材,把课本再认真看一遍,查遗补漏,将知识条理化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不能做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到锻炼的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。
考研数学概率的重点复习指导2
一、注意基本概念、基本性质及基本方法的复习
很多考生在复习过程中经常忽略基础的重要性,总是针对一些难题、偏题、怪题进行训练,但是我们从历年真题上就可以看出,对基本概念、基本性质和基本方法的考查才是考研数学的重点,真题中所谓的难题也都是在基础概念、基本性质及基本方法上进行加深的,很多考生由于对这些基础内容掌握不够牢固,理解不够透彻,导致许多不应该失分的现象,这一点在线性代数这个模块上体现的更加明显。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基础知识。
比如,线性代数中经常涉及到的基本概念,余子式,代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性表示,线性相关与线性无关,极大线性无关组,基础解系与通解,特征值与特征向量,矩阵相似与相似对角化,二次型的标准形与规范形,正定矩阵与正定二次型,合同变换与合同矩阵等等,这些概念必须理解清楚。
对于线性代数中的基本运算,行列式的计算(数值型、抽象型),求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关性的判定,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量,判断矩阵是否可以相似对角化,求相似对角矩阵,用正交变换法化实对称矩阵为对角矩阵,用正交变换化二次型为标准形等等。一定要注意总结这些基本运算的运算方法。例如,复习行列式的计算时,就要将各种类型的行列式计算方法掌握清楚,如,行(列)和相等型、爪型、三对角线型,范德蒙行列式等等。
二、注重知识点的衔接与转换
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,正是因为各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性比较大,解题方法灵活多变,因此,大家复习时一定要注重知识点的'衔接与转换,不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。比如,在复习过程中,我们可以以方程组解的讨论为复习主线,弄清楚它与行列式、向量、矩阵、特征值与特征向量之间有什么样的关系,掌握他们之间的联系与区别,对线性代数整个知识框架的理解有很大帮助,同时在解题思路和方法上也会有很大的帮助。
三、多做练习,注意总结
从近几年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题,边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。在做题过程中,大家一定要注意以下两点:一是多动笔,数学复习最忌讳光看不练,尤其是线性代数,它的计算量比较大,很多同学考试时因为计算性的错误丢分是很常见的,所以多做练习对于巩固知识点、提高计算能力都有很大帮助;二是多总结,*时在做题的过程中需要注意总结一些解题思路,哪种类型的题需要用什么思路,解题过程中容易出错的地方在哪里,这样经过一段时间训练后,在正式考试中看到相似题型后可以迅速确定用哪种解法,**提高了解题的速度和效率。另外,一个试题可能有多种解法,我们应该力求寻找运算路径短、运算步骤少、运算时间省的解法,以求在考试中争取时间,通过自己的归纳、总结、加深对数学思想方法的理解,从而达到简化运算、提高速度的目的。
考研数学概率的重点复习指导 (菁选2篇)扩展阅读
考研数学概率的重点复习指导 (菁选2篇)(扩展1)
——考研数学概率基础复习的重点 (菁选2篇)
考研数学概率基础复习的重点1
对于考研数学概率论与数理统计这部分内容的复习而言,明确考研复习的范畴非常关键。你所学过的东西不一定全都考(比如数一的假设检验部分),没学过的东西也不一定完全不考(比如14年数一23题的第3问考查了大数定律的相关内容)。考研考的是方法,基本概念,基本公式,基本方法是一定要掌握的。考研概率统计不要只是复习过去学过的课本,这样做对考研没有多大的实际帮助。总结概率论与数理统计这部分试题,常犯以下的错误:
(1)概念不清,弄不清事件之间的关系和事件的结构;
(2)分析有误,概率模型搞错;
(3)不能正确地选择概率公式去证明和计算;
(4)不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。
我们应该有针对性地去了解问题症结,各个击破。在考试的时候很多同学都有看不懂题目的困惑,比较着急。其实,看不懂题目一方面是因为做的题目比较少,另一个很重要的方面是对基本概念、基本性质理解的不够深刻,没有理解到这些概念的精髓和用途。
针对前者,老师建议考生一方面多做些题目,结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答了。
针对后者,老师建议考生采用把实际例子和模型相结合记忆的方式。比如二项分布的概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上k次的概率是多少呢?在理解基础上的记忆,内容才不会轻易忘记,同时又能够作为模式正确运用到题目的解决中。
概率论与数理统计的考分分布不仅均值偏低,而且“方差”也大,中等及中上等考生的微积分和线性代数的成绩相差并不是很大,他们之间在数学成绩上的差距主要来源于概率论与数理统计部分,一些发挥不稳定的考生甚至因此而失去被录取的机会。由此分析得出,对多数考生来说,概率论与数理统计部分是考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水*的考生来说,尤为如此。
我们认为考生在数学科目的复习安排上,要先从最薄弱的基础环节开始,也就是说,在整个数学课程复习之初,要按照最新考研大纲规定的内容,先将概率论与数理统计再学习一遍,一节节地复习,逐个概念地领会,一题一题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。这一阶段复习做题时,不要过多地去追求难题、技巧,要重视对教材中一般习题的练习,配合各章节内容脚踏实地、全面仔细地复习做基础题。只要是考纲上有的内容,就要不遗漏地弄会、搞透总结一般题型的解题方法与思路。在复习初期这个阶段中,虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利的前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。
再来就是题型分布的问题。概率论与数理统计这部分内容从历年试题看考查单一知识点比较少,即使是填空题和选择题也是如此。大多数试题是考查考生的理解能力和综合应用能力,考生要能够灵活地运用所学的.知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
考研数学概率基础复习的重点2
1、拥有:有三本自己的经典课本(借的也可以),有一个笔记本。
2、阅读:在九月份之前将三个课本看完。
3、思考:阅读过程中想“今天这个章节讲的在整个数学体系中充当什么角色?”
4、做题:每次只做比你当时水*高一点的题。
5、反思:对做的题的感想,回忆自己的知识结构。
以下细述上述要点:
第一准备课本:应该会有很多人不以为难,我想你应该在你有课本的第一页空白处画一条线表示你的考研数学目标,再画第二条线表示你当前的学习水*。在最上面写上你最喜欢的一句话,例如我自己写的是:要成功就不要有借口。每天都做这个理想图一次,每一次不开心时也看一次。
第二阅读工作:这是一个长期的单调过程,我希望这一个过程中你自己心中有一个大约的计划,什么时候完成哪个章节。你可以将这个过程看成是任务,但是在执行任务中你尽量记点什么东西,有一样东西或许能让你忘记自己是在痛苦的工作:那就是抄一下公式,题目,定理。
第三个是思考:不要求你过目不忘,但是总应该记点什么才行吧,否则如何证明我们阅读过了吗?以我的想法不要花大多时间去记公式,但是花更多时间去思考学过了什么概念,定理的条件,估计这个定理能有什么用。我希望你能在这个过程中更多去思考宏观上的层面,不必太在意微观的,从而建立起较好形象的思维,数学有两个支柱:直观、理论。读书这个过程中你的理论能上提,但直观这方面却不一定,但是直观能让你学习更轻松,考试答题速度更快。总的来说:应该记的公式花时间去背也行,去抄个10次也行,但那都不是主要的,你花更多时间在思考我学了什么,学的这东西有什么用。
第四做题:不做题,你以为数学是阅读理解啊!找一本不差的习题集,地毯式的轰炸过去,练就你做题的**度。不要只做很简单的题,能做真题是最好的,没有什么基础水*有限啊,做不了那样子难的题啊,这都是借口!因为现实就是今年考的题目就差不多是这些,难度也差不多,你不做这些你做什么。别低估了你自己的能力。不要给自己那么多借口,如果你想成功的话。
第五反思:不反思的学习至多我们也只能算是一个学习机器,有所学有所用,但不会总结,不会创新,不会突破。我们希望在做完题之后能想想这个题考查点在哪?命题思路是如何呢?可能如何改进题目呢?我刚才做不出来是因为我的缺失,还是思维过程未建立呢?做这个题有什么心得体会呢?写下来,以后别人问到你了,你就能当个老师给他们讲了。
考研数学概率的重点复习指导 (菁选2篇)(扩展2)
——考研数学概率复习的重点知识 (菁选2篇)
考研数学概率复习的重点知识1
?1.元素分析法
【例】求7人站一队,甲必须站在当中的不同站法。
【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。
?2.位置分析法
【例】求7人站一队,甲、乙都不能站在两端的不同站法。
【解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。
?3.间接法
【例】求7人站一队,甲、乙不都站两端的不同站法。
【解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。
?4.捆绑法
【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。
【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。
?5.插空法
【例】求7人站一队,甲、乙两人不相邻的不同站法。
【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。
?6.留出空位法
【例】求7人站一队,甲在乙前,乙在丙前的不同站法。
【解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。
?7.单排法
【例】求9个人站三队,每排3人的不同站法。
【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。
数学是考研最重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定,因此各位20xx考研的同学们应该多下功夫。
考研数学概率复习的重点知识2
一、忽略对概念的理解
概念几乎是一切数学解题的基础,有同学在*时复习中只注重概念的死记硬背,却忽略了对概念的理解。另外,数学概念众多,久而久之就会出现概念混乱,概念一旦出错,解题就会出现问题。
二、基本公式理解掌握频出错
基本公式理解和掌握不好,几乎很多同学都会犯这个毛病,基本公式的掌握程度直接表现出考生*时做题的多少,光凭死记硬背是不能加深印象的,一些对基本公式理解和掌握好的同学,必然是通过长时间的训练巩固来的。
三、做题少计算能力差
针对这个问题,有人认为是做题太少的问题,这是习惯问题,而且是一种从小就养成的马虎习惯造成的。例如*时做题,有些计算不愿动笔,直接用脑计算,这样势必会有记忆错误的时候,告诫同学们:好记性不如烂笔头。
四、综合性试题知识点分析不到位
对于考查多个知识点的综合性试题,考生往往解答的不好,做不完整,得高分的很少。这是典型的对各章节知识融合的能力不够所致,说明学生在冲刺阶段的复习出现了问题。
五、解决实际应用问题的能力弱
对于经济、生产、生活中的实际问题,要根据所学的基本概念和基本理论进行分析判断,抽象出数学模型才能获得解决。这是很多考生的弱点,因此得分率较低。
考研数学概率的重点复习指导 (菁选2篇)(扩展3)
——考研数学概率部分复习的重点
考研数学概率部分复习的重点1
1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。
2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,*面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,*面方程;判定*面与直线间*行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界*面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法*面、曲面的切*面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的`切*面和法线,求空间曲线的切线与法*面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界*面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
考研数学概率的重点复习指导 (菁选2篇)(扩展4)
——考研数学备考重点规划指导 (菁选2篇)
考研数学备考重点规划指导1
(一)7月之前——按照教材系统复习
这个阶段主要是根据大学教材,也就是同济版的高数和线代,浙大版的概率,按照考试大纲进行系统复习,将大纲中规定的知识点一字不落掌握,达到记住所有公式、概念的效果。现在2014年考研数学大纲还没有公布,所以大家可以参考下20xx年的进行复习,一旦大纲发布,要立刻看新大纲,以新大纲为主。基础好的同学可以不买基础篇,可以直接看提高篇。基础不好的同学不买基础书怎么办?看课本的内容。但总的一条是要看大纲复习,因为目前有的课本和大纲不是一致的。以浙江大学概率数数理统计为例,比如说回归分析、方差分析就不考,书里有,大纲上没有要求就不考。即便是大数定律,书上有三种情况,而大纲只要求两种情况,因此在使用课本复习时,一定要严格按照大纲复习,对这种书的使用,大家不要盲目去做。一个书要至少指出在这一章节当中的哪些是重点、哪些是次重点,哪些是一般重点,因为同学是不会区分的。另外,要围绕重点来配合有关内容的复习,而不是泛泛复习。
(二)7月——11月:结合考研真题进行复习
初步复习之后,考生应该结合考研数学真题,仔细分析历年考试试题的题型和重点,将考试中的要点掌握。考研历年真题是数学复习最好的老师,其实对其他科目来说真题也是有同样重要的作用。当然,真题如何做及做哪些真题也是关键。如何做真题与做真题的目的有关。如果只是为了解一下考研出的题与*时做的练习题有什么区别,只需要看看相关资料上按内容所做的真题链接即可。
如果是为了试测一下复习水*,那需要做连续两三套试题,因为每一年的试题其总体难度也有差别,所以做两三套后再总结评价。如果是为了模拟训练,那需要按考试的时间安排做题,比如考试将会在早上8点到11点,做真题就安排在每天早8点到11点,完全按真实考场进行。
无论哪一种做题目的,都要求在做完题后有归纳总结。一个是总结做题技巧,一个是总结自己基础知识上的欠缺,还有一个是深入挖掘题目拓展意义。技巧是训练的结果,没有*时用心的训练与刻意的总结,即使老师告诉你在某种情况下用某种技巧,你也很难将它准确灵活地用在刀刃上。
做完题后再从各个角度全方位分析题目有利于以后遇到题目时迅速准确定位。全方位分析题目包括分析出题人的目的、考查内容、题目的难度、解题思路及方法等。
另外,做完历年真题还需调整心态。遇到困难较多时及时补充未知的考点及内容,完成的较好时不能就认为自己完全不用再复习了。正确处理情绪,为后一阶段的复习做好准备!
(三)12月——考前,适当模拟
这个阶段,考生最主要的目的还是查漏补缺,可以适当做些模拟题。但是模拟题的选择不能盲目,盗版的一概不用。海文考研数学老师编写的高质量考研模拟试题,可以供大家考前检测。模拟的成绩不是最重要的,关键是看自己还有哪些方面没有掌握,及时学习。
在最后的冲刺阶段,考研数学的复习主要是通过模拟题自测,对前面的复习做一个总体的检验。经过前几轮的准备,考生的能力和知识储备应该足以应对考研试题了。阶段前期,考生也应该已经进行了几套模拟试题或者真题的实战演练。在模拟训练中,你有没有按照实际的考场规则,在规定时间内认真答题,并保持卷面整洁呢?越是逼真的模拟,才越是能够增强你的临场应变能力,提前暴露出一些你*时忽略的问题。
考生们还要注意答卷时间的分配,多多练习,掌握答题的合理节奏。此外,考场心态的调整也要重视。无论自己的模拟考试成绩如何,都要保持良好的心态:分数考高了,不要洋洋自得,毕竟真实的考场上压力和环境都和*时不太一样;分数考低了,也别灰心丧气,认真总结经验教训,况且一般来说模拟题都要难于真题。
真正的数学高分都是靠大家认认真真、老老实实的复习,一步一步地总结归纳。相信大家明确目标之后,复习更加有效!
考研数学备考重点规划指导2
1、行列式
本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的`相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。
2、矩阵
矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。
3、向量
本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联系,从各个方面加强对向量组线性相关性的理解。此章常见的考试题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一要求)。
4、线性方程组
考研数学重点考查的章节,从历年真题来看,方程组出题的频率较高,几乎每年都有考题。本章的核心考点有:解的判定与解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要的题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题等。本章节常与向量章节联系在一起出题,二者属于同一问题的不同描述,在考题中经常是交替出现的。
5、特征值与特征向量
考研数学重点考查的章节,线性代数的核心内容,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。核心题型有:数值型矩阵的特征值和特征向量的计算、抽象型矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求矩阵A、有关实对称矩阵的问题。本章节与二次型联系也很紧密。
6、二次型
这部分需要掌握两点:一是用正交变换法和配方法化二次型为标准形,核心是正交变换法。但是需要注意的是对于出现多重特征值时,解方程组所得的对应的特征向量不一定是正交的,这时需要对所得到的向量组进行施密特正交化,然后再规范化。二是二次型正定性的判断,核心考点是二次型正定性的判定方法。
考研数学概率的重点复习指导 (菁选2篇)(扩展5)
——考研数学概率部分复习的关键 (菁选2篇)
考研数学概率部分复习的关键1
?在文字叙述题上下功夫
考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。
?会用公式解题
概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。
?对概率论与数理统计的考点整体把握
考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。
?心理上要重视
考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!
但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。
如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!
在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的`复习程度。
概念不清,只会背不会运用;
不能正确地选择概率公式去证明和计算;
不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。
分析有误,概率模型搞错。
考研数学概率部分复习的关键2
七大定理的归属。
零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。
对使用每个定理的体会
学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。
1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。
2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。
3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:
(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;
(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;
(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;
(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;
(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。对此我的体会是应当从需要证明的结论入手,对结论进行分析。我们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会找到证明方法。
4、积分中值定理其实是微分中值定理的推广,对变上限函数使用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于泰勒定理的形式。因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用积分中值定理。当证明结论中仅有积分与被积函数本身时,一般使用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展开变上限积分为泰勒展开式。
考研数学概率的重点复习指导 (菁选2篇)(扩展6)
——考研数学线代的复习重点 (菁选2篇)
考研数学线代的复习重点1
线性方程组的三种形式包括原始形式、矩阵形式、向量形式,高斯消元法是最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1)把某个方程的k倍加到另外一个方程上去;
(2)交换某两个方程的位置;
(3)用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
因此在求解线性方程组时只需对系数矩阵和增广矩阵进行初等变换。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。
考研数学线代的复习重点2
一、易混概念:
连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
二、罗尔定理:
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)*行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线*行于割线AB,与x轴*行。
三、.泰勒公式展开的应用
相信很多同学看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?
四、应用多次中值定理
大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的**度,要很快反映老师出这题考哪几个中值定理,我的**性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:
这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的.印象,下次轮到的时候或许就是考场**,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在*时踏实做,见识广,严要求的基础上。
考研数学概率的重点复习指导 (菁选2篇)(扩展7)
——考研数学考前的复习指导 (菁选2篇)
考研数学考前的复习指导1
第一,要重视历年真题。对于历年真题学生是必须要做的,而且要求至少做两遍,第一遍要严格按考试规定限定在三个小时内做完,做题过程中不要翻看辅导书,旨在训练解题速度、考试心理状态、答题技巧等;第二遍要按题型再做一遍,总结每种题型的解题技巧和知识,对于薄弱知识点和知识漏洞要回归参考书补缺。特别对于近三到五年的真题,要反复总结研读,由于受大纲的限制,前几年考试的内容都有比较大的重复率,重点的内容反复考,年年考,这些考题或者改变一种数值,或者变一种说法,但是解题的思路和所用到的知识点几乎是一样的,所以希望考生一定要注意年年被考到的内容。对往年考题要全部消化理解,认真归纳。同时也要注意近几年大纲要求但没有考到的一些个别内容,这些内容如果考到都是一些基本概念和基本运算并不难,但在*时复习时这些内容学生往往重视程度不够,所以一旦考到得分率并不高。
第二,做模拟题。建议有针对性的、系统的、封闭式的做2-3套模拟试卷,这些试卷自己在限定的三个小时时间内,结合试卷的答案解析,给自己打一个分数,同时找出自己考试中的不足,哪些问题是由于自己做题时的马虎,应该做对而没有做对,对于计算上的失误,不能掉以轻心。哪些是属于基本概念理解不深,不透的,自己要回归教材进一步加深理解,对有些自己确实做不出来的,就放弃它,这个时候不建议做难题,重点是强化基础,争取把真题里的基础分都拿到。
第三,考试的临场发挥。因为数学考试是理性的考试,要求大量的计算、理性的思维,所以考试中要沉着冷静,自己从前往后,逐步的做,合理的分配时间,不要由于一两道题不会,而陷入很长的时间,这是最不可取的,一般来说,数学试卷的客观题(选择、填空)答题时间**在在55分钟-65分钟之间,解答题时间保证在115-125分钟之间。建议不要先做解答题,再做客观题,这样在心理上就会慌,会影响发挥,自己从前往后做,一定会发挥出自己比较好的成绩。
考研数学考前的复习指导2
第一章 随机事件和概率
1、随机事件的关系与运算
2、随机事件的运算律
3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)
4、概率的`基本性质
5、随机事件的条件概率与**性
6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)
7、全概率公式的思想
8、概型的计算(古典概型和几何概型)
第二章 随机变量及其分布
1、分布函数的定义
2、分布函数的充要条件
3、分布函数的性质
4、离散型随机变量的分布律及分布函数
5、概率密度的充要条件
6、连续型随机变量的性质
7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)
8、随机变量函数的分布(离散型、连续型)
第三章 多维随机变量及其分布
1、二维离散型随机变量的三大分布(联合、边缘、条件)
2、二维连续型随机变量的三大分布(联合、边缘和条件)
3、随机变量的**性(判断和性质)
4、二维常见分布的性质(二维均匀分布、二维正态分布)
5、随机变量函数的分布(离散型、连续型)
第四章 随机变量的数字特征
1、期望公式(一个随机变量的期望及随机变量函数的期望)
2、方差、协方差、相关系数的计算公式
3、运算性质(期望、方差、协方差、相关系数)
4、常见分布的期望和方差公式
第五章 大数定律和中心极限定理
1、切比雪夫不等式
2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)
3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)
第六章 数理统计的基本概念
1、常见统计量(定义、数字特征公式)
2、统计分布
3、一维正态总体下的统计量具有的性质
4、估计量的评选标准(数学一)
5、上侧分位数(数学一)
第七章 参数估计
1、矩估计法
2、最大似然估计法
3、区间估计(数学一)
第八章 假设检验(数学一)
1、显著性检验
2、假设检验的两类错误
3、单个及两个正态总体的均值和方差的假设检验
考研数学概率的重点复习指导 (菁选2篇)(扩展8)
——考研数学如何找到复习的重点 (菁选2篇)
考研数学如何找到复习的重点1
?深刻理解基本概念和基本理论
概念是事物的本质特征,有些概念的考查几乎是每年必考的,如导数的概念,不仅仅是利用导数概念进行计算,有时还需要理解导数概念的内涵与外延,这也是研研们做题的一些关键,如导数的等价定义、导数的几何意义、导数与可微、连续的关系等等。
有些基本理论,如洛必达法则求不定式极限,几乎是每年必考的,对于洛必达法则的内容,以及洛必达法则如何运用,运用时需要注意一些什么条件,这都是研研们要搞明白的。对于概念和理论一定要理解到位,这些是大家做题时的灵魂,缺少了它们,做题时你就会觉得毫无头绪。
?掌握基本方法,灵活应用基本方法解题
方法是解题过程中的框架,只有熟悉基本方法,做题时才能以不变应万变。如求函数的极值是导数应用中一类常考的题型,求解的步骤一般如下:求函数的定义域、求函数的导数、找出函数的驻点及不可导点、利用判断极值的第一充分条件进行验证,看看驻点和不可导哪些点满足左右两边单调性相反。此种类型的题目以解答题和选择题的形式在历年真题中都考过。
此外还有,比如交换积分次序、改变坐标系等等都属于基本方法的考查,有些题目甚至都不需要计算就可以找出答案。帮帮提醒大家,对于基本方法要求灵活应用,不能死记硬背。
?适当练习中档难度的题目即可
数学在复习过程中,做题肯定是少不了的,但是同学们做题时一定要把准方向,不能做偏题、怪题和难题。在考试试卷中,至少有70%的题目是基础题,也就是难度在0.3-0.8之间。考试中不会考太难的题目。所以大家在复习过程中不要研究太难的题目,没太大的必要。多做做基础类的题目,后期练习一下带有综合性的基础类题目即可。复习时以真题的难度为导向进行复习即可。
考研数学如何找到复习的重点2
1、强调学习而不是复习
要有第一次学数学的心理准备。
2、复习顺序的选择问题
建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。
3、注意基本概念、基本方法和基本定理的复习掌握
结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。
4、加强练习,重视总结、归纳解题思路、方法和技巧
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。
5、不要依赖答案
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目**地做一遍。
6、强调积极主动地亲自参与,并整理出笔记
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除